Advertisement

Community Ecology

, Volume 12, Issue 1, pp 78–88 | Cite as

Possible effects of inter-specific competition on the coexistence of two parasitoid species: Trichogramma brassicae Bezdenko and Chelonus oculator (F.) (Hymenoptera: Trichogrammatidae, Braconidae)

  • T. Cabello
  • M. GámezEmail author
  • A. Torres
  • J. Garay
Article

Abstract

Insect parasitoids have been widely studied, particularly due to their ecological implications through the study of the special relationships observed among this kind of species, as well as to their expression in mathematical models. However, there are still scarce studies on parasitoid relationships and their expression in more realistic mathematical models. The present work is aimed at deepening into competition relationships among parasitoids. Bearing this purpose in mind, the system shaped by two parasitoids was chosen: Trichogramma brassicae (idiobiont egg parasitoid) and Chelonus oculator (koinobiont egg-larval parasitoid). Both species compete against each other for the same host species (Lepidoptera). The results obtained in the laboratory point out that T. brassicae may be considered a better competitor than Ch. oculator. This is the result of the extrinsic competition due to the substances injected by the female during parasitization. However, our results show this classification into better and worse competitors inaccurate. Thus, these interspecific competition influences are detrimental to both parasitoid species. This is the first time that the effect of this competition is mentioned regarding parasitoid functional response. Our results and their ecological implications are reported and discussed.

Keywords

Extrinsic competition Functional response Handling time Hymenoptera Idiobiont Intrinsic competition Koinobiont Larvaphogous Lepidoptera Mother effects Oophagous Parasitoid Polydnavirus Wolbachia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ables, J.R., Vinson S.B. and Ellis J.S. 1981. Host discrimination by Chelonus insularis, Telenomus Heliothidis, and Trichogramma pretiosum. BioControl 26: 149–156.Google Scholar
  2. Alphen, J.J.M. van and Jervis M.A. 1996. Foraging behaviour. In: Jervis, M.A., Kidd, N. (Eds.). Insect Natural Enemies: Practical Approaches to their Study and Evaluation. Chapman & Hall, London, pp. 1–62.Google Scholar
  3. Amarasekare, P. 2000. Coexistence of competing parasitoids on a patchily distributed host: local vs. spatial mechanisms. Ecology 81: 1286–1296.CrossRefGoogle Scholar
  4. Askew, R.R. and Shaw, M.R. 1986. Parasitoid communities: their size, structure and development. In: Waage, J. and Greathead, D. (eds.), Insect Parasitoids. Academic Press. London, pp. 225– 264.Google Scholar
  5. Baaren, J., Boivin, G. and Nenon, J.P. 1994. Intra- and interspecific host discrimination in two closely related egg parasitoid. Oe-cologia 100: 325–330.Google Scholar
  6. Belda, J., Justicia, L., Pascual, F. and Cabello, T. 1994. Distribución espacial de Spodoptera exigua en cultivo de pimiento en inver-nadero. Bol. San. Veg. Plagas 20: 287–301.Google Scholar
  7. Benoit, M. and Voelege, J. 1979. Choix de l’hote et comportement trophique des larves de Trichogramma evanescens en fonction du dévelopment embryonnaire de Ephestia kuehniella et Os-trinia nubilali. BioControl 24: 199–207.Google Scholar
  8. Berryman. A.A., Stenseth, N.C. and Isaev, A.S. 1987. Natural regulation of herbivorous forest insect populations. Oecologia 71: 174–184.CrossRefGoogle Scholar
  9. Beserra, E.B., Parra, J.R.P. 2005. Impact of the number of Spodop-tera frugiperda egg layersonparasitism by Trichogramma atop-ovirilia. Sci. agric. 62: 190–193.CrossRefGoogle Scholar
  10. Boivin, G. and Brodeur J. 2006. Intra- and Interspecific interactions among parasitoids: Mechanisms, outcomes and biological control. In: Brodeur, J. and Boivin, G. (eds.), Trophic and Guild in Biological Interactions Control. Springer, Berlin, pp. 123–144.CrossRefGoogle Scholar
  11. Bonsall, M.B., Hassell, M.P. and Asefa, G. 2002. Ecological tradeoffs, resource partitioning, and coexistence in a host-parasitoid assemblage. Ecology 83: 925–934.Google Scholar
  12. Cabello, T. 1985. Biología de dos especies de Trichogramma parasi-tas de Heliothis spp. en algodonero: posibilidades de su empleo como agentes de control. PhD Diss, Universidad de Cordoba.Google Scholar
  13. Cabello, T. 1989. Natural enemies of noctuid pests in alfalfa, corn, cotton and soybean crops in southern Spain. J. Appl. Entomol. 108: 80–88.CrossRefGoogle Scholar
  14. Cabello, T. and Vargas, P. 1985. Estudio con olfactómetro de la in-fluencia de la planta y del insecto huésped en la actividad de búsqueda de Trichogrmma cordubensis y T. sp.p. buesi. Bol. San. Veg. Plagas 11: 237–241.Google Scholar
  15. Cabello, T. and Vargas, P. 1988. Response of Trichogramma cor-dubensis and T. pintoi to different densities of alternative host eggs. Les Colloques de l’INRA, 9: 165–172.Google Scholar
  16. Cabello, T., Gamez, M. and Varga, Z. 2007. An improvement of the Holling type III functional response in entomophagous species model. J. Biol. Syst. 15: 515–524.CrossRefGoogle Scholar
  17. Cabello, T., Pino, M. del, Torres, A., Lara, L., and Blom, J. van der. 2005. Control biológico de Spodoptera exigua en cultivos hortícolas en invernaderos: cría del parasitoide. I Jornadas de Control Biorracional de Plagas. C.S.I.C. Barcelona: 19.Google Scholar
  18. Cave, R.D. 2000. Biology, ecology and use in pest management of Telenomus remus. Biocontrol News Inf. 21: 21–26.Google Scholar
  19. Chapman, A.V., Kuhar, T.P., Schultz, P.B. and Brewster, C.C. 2009. Dispersal of Trichogramma ostriniae in potato fields. Environ. Entomol. 38: 677–685.CrossRefGoogle Scholar
  20. Chiri, A.A. and Legner, E.F. 1982. Host-searching kairomones alter behavior of Chelonus sp. nr. curvimaculatus, a hymenopterous parasite of the pink bollworm, Pectinophora gossypiella. Environ. Entomol. 11: 452–455.CrossRefGoogle Scholar
  21. Chiri, A.A. and Legner, E.F. 1986. Response of three Chelonus species to kairomones in scales of six Lepidoptera. Can. Entomol. 118: 329–333.CrossRefGoogle Scholar
  22. Clausen, C.P. 1976. Phoresy among entomophagous insects. Annu. Rev. Entomol. 21:343–368.CrossRefGoogle Scholar
  23. Colazza, S., Peri, E., Salerno, G. and Conti, E. 2010. Host searching by egg parasitoid: Exploitation of host chemical cues. In: Con-zoli, F.L, Parra, J.R.P. and Zucchi, R.A. (eds.). Egg parasitoids in agroecosystems with emphasis on Trichogramma. Prog. Biol. Control 9: 149–165.Google Scholar
  24. Consoli, F.L., Kitajima, E.W. and Parra, J.R.P. 1999. Ultrastructure of the natural and factitious host eggs of Trichogramma galloi and Trichogramma pretiosum. Int. J. Insect Morphol. Embryol. 28: 211–229.CrossRefGoogle Scholar
  25. Doutt, R.L. 1984. Características bio1ógicas de los adultos en-tomófagos. In: DeBach, P. (ed.). Control biológico de las plagas de insectos y malas hierbas. C.E.C.S.A., México, pp. 179–204.Google Scholar
  26. Earl, S.L. and Graham, H.M. 1984. Interaction between Chelonus insularis and Telenomus remus, parasitoids of Spodoptera frugiperda. Southwest. Entomol. 9: 326–333.Google Scholar
  27. Faria, C.A., Torres, J.B. and Farias, A.F. 2000. Resposta funcional de Trichogramma pretiosum Riley parasitando ovos de Tuta ab-soluta: Efeito da idade do hospedeiro. An. Soc. Entomol. Bras. 29: 85–93.CrossRefGoogle Scholar
  28. Fatouros, N.E., Huigens, M.E., Van Loon, J.J.A., Dicke, M., and Hilker, M. 2005. Butterfly anti-aphrodisiac lures parasitic wasps. Nature 433:704.CrossRefGoogle Scholar
  29. Fatouros, N.E., Dicke, M., Mumm, R., Meiners, T. and Hilker, M. 2008. Foraging behavior of egg parasitoids exploiting chemical information. Behav. Ecol. 19: 677–689CrossRefGoogle Scholar
  30. Garay, J. and Mori, T.F. 2010. When is predator’s opportunism remunerative? Community Ecol. 11: 160–170.CrossRefGoogle Scholar
  31. Garcia-Martin, M., Gamez, M. and Cabello, T. 2005. Estudio de respuesta funcional en sistemas parasitoide-huésped: aplica-ción en lucha biológica contra plagas. Ed. Universidad de Al-meria. Almeria.Google Scholar
  32. Garcia-Martin, M., Gámez, M. and Cabello, T. 2008. Functional response of Chelonus oculator according to temperature. Community Ecol. 9:45–51.CrossRefGoogle Scholar
  33. Gauld. I. and Bolton. B. 1996. The Hymenoptera. Oxford University Press, Oxford.Google Scholar
  34. Godfray, H.C.J. and Müller, C.B., 1998. Host parasitoid dynamics. In: Dempster, J.P. and McLean, I.F.G. (Eds.). Insect Populations: In Theory and in Practice. Kluwer Academic Publ. Dordrecht, pp. 135–165.CrossRefGoogle Scholar
  35. Gordh. G., Legner. E.F. and Caltagirone, L.E., 1999. Biology of parasitic Hymenoptera. In: Bellows, T.S., Fisher, T.W., Caltagi-rone, L.E., Dahlsten, D.L., Gordh, G. and Huffaker, C.B. (Eds.). Handbook of Biological Control: Principles and Applications of Biological Control. Elsevier, Amsterdam, pp. 355–381.Google Scholar
  36. Grossniklaus-Bürgin, C., Pfister-Wilhelm, R., Meyer, V., Treibl-mayr, K. and Lanzrein, B. 1998. Physiological and endocrine changes associated with polydnavirus/venom in the parasitoid- host system Chelonus inanitus-Spodoptera littoralis. J. Insect Physiol. 44, 305–321.CrossRefGoogle Scholar
  37. Hassell, M.P. 1978. Arthropod Predator-prey Systems. Princeton University Press, Princeton.Google Scholar
  38. Hawkins, B.A. and Cornell, H.V. 1994. Maximum parasitism rates and successful biological control. Science 266: 1886.CrossRefGoogle Scholar
  39. Hawkins, B.A., Mills, N.J., Jervis, M.A. and Price, P.W. 1999. Is the biological control of insects a natural phenomenon? Oikos 86: 493–506.CrossRefGoogle Scholar
  40. Hawlitzky, N. and Boulay, C. 1982. Régimes a1imentaires et de-velopement chez Trichogramma maidis dans 1’oeuf d’ Ana-gasta kuehiniella. Les Trichogrammes.Les Colloques de l’INRA 9: 101–106.Google Scholar
  41. Headrick, D.H. and Goeden, R.D. 2001. Biological control as a tool for ecosystem management. Biol. Control 21: 249–257.CrossRefGoogle Scholar
  42. Hoddle M.S. 2004. Biological control in support of conservation: friend or foe. In: Gordon, M.S. and Bartol, S.M. (eds.). Experimental Approaches to Conservation Biology. Univ. California Press. Berkeley, pp. 202–240CrossRefGoogle Scholar
  43. Hohmann, C.L., Luck, R.F., Oatman, E.R. and Platner, G.R. 1988. Oviposition behavior of Trichogramma platneri. An. Soc. ent. Bras. 17: 185–195. Google Scholar
  44. Houseweart, M.V, Southard, G. and Jennings D.T. 1982. Availability and acceptability of spruce budworm eggs to parasitism by the egg parasitoid, Trichogramma minutum. Entomophaga 25: 95–103.Google Scholar
  45. Hunter, M.D. and Price, P.W. 1992. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73: 724–732.Google Scholar
  46. Jandel Scientific, 1994. Table Curve 2D-User´s manual. Version 2.0. Jandel Scientific. San Rafael.Google Scholar
  47. Jarjees, E.A. and Merritt D.J. 2002. Development of Trichogramma australicum in Helicoverpa host eggs. Austral. J. Entomol. 41: 310–315.CrossRefGoogle Scholar
  48. Jarjees, E., Merritt, D.J. and Gordh G. 1998. Anatomy of the mouth-parts and digestive tract during feeding in larvae of the parasi-toid wasp Trichogramma australicum. Int. J. Insect Morphol. Embryol. 27: 103–110.CrossRefGoogle Scholar
  49. Jones, D, 1996. Biochemical interaction between Cheloninae wasps and their Lepidopteran hosts: after a decade of research – the parasite in control. Insect Biochem. Mol. Biol. 26: 981–996.CrossRefGoogle Scholar
  50. Juliano, S.A. 1982. Influence of host age on host acceptability and suitability for a species of Trichogramma attacking aquatic Dip-tera. Can. Entomol. 114: 713–720.CrossRefGoogle Scholar
  51. Kainoh, Y. and Brown, J.J. 1994. Amino acids as oviposition stimulants for the egg-larval parasitoide, Chelonus sp. near curvi-maculatus. Biol. Control 4: 22–25.CrossRefGoogle Scholar
  52. Kaeslin, M., Wehrle, I., Grossniklaus-Burgin, C., Wyler, T., Guggis-berg, U., Schittny, J.C. and Lanzrein B. 2005. Stage-dependent strategies of host invasion in the egg–larval parasitoid Chelonus inanitus. J. Insect Physiol. 51: 287–296.CrossRefGoogle Scholar
  53. Kalyebia, A., Overholtb, W.A., Schulthessa, F., Muekec, J.M., Hassan, S.A. and Sithananthama, S. 2005. Functional response of six indigenous trichogrammatid egg parasitoids in Kenya: influence of temperature and relative humidity. Biol. Control 32: 164–171.CrossRefGoogle Scholar
  54. Klomp, H. and Teerink, B.J. 1962. Host selection and number of eggs per oviposition in the egg-parasite Trichogramma embryo-phagum. Nature 195: 1020–1021.CrossRefGoogle Scholar
  55. Laurenne, N. 2008. Phylogeny of a taxonomically difficult group and evolution of host location mechanism. PhD thesis. Faculty of the Biosciences of the University of Helsinki, Helsinki.Google Scholar
  56. Lewis, W., Jones, R.L. and Sparks, A.N. 1972. A host-seeking stimulant for the egg parasite, Trichogramma evanescens. Its source and demonstration of its laboratory and field activity. Ann. En-tomol. Soc. Am. 65:1087–1089.CrossRefGoogle Scholar
  57. Lewis, W.J., Nordlund, D.A., Gueldner, R.C., Teal, P.E.A. and Tum-linson, J.H. 1982. Kairomones and their use for management of entomophagous insects. XIII. Kairomonal Activity for Trichogramma spp. ofabdominal tips, excretion, and a synthetic sex pheromone blend of Heliothis zea moths. J. Chem. Ecol. 8: 1323–1331.CrossRefGoogle Scholar
  58. Mackauer, M. 1990. Host discrimination and larval competitions in solitary endoparasitoids. In: Mackauer, M., Ehler, L.E. and Roland, J. (eds.). Critical Issues in Biological Control. Entercept Ltd., Andover, pp. 41–62.Google Scholar
  59. Mahmoud, A.M.L. and Lim, U.T. 2008. Host discrimination and interspecific competition of Trissolcus nigripedius and Telenomus gifuensis, sympatric parasitoid of Dolycoris baccarum. Biol. Control 45: 337–343.CrossRefGoogle Scholar
  60. Makeea, H. 2006. Effect of host egg viability on reproduction and development of Trichogramma cacoeciae and T. principium. Biocontrol Sci. Tech. 16: 195– 204.CrossRefGoogle Scholar
  61. McGregor, R. and Henderson, D. 1998. The influence of oviposition experience on response to host pheromone in Trichogramma sibericum. J. Insect Behav. 11: 621–632.CrossRefGoogle Scholar
  62. Miller, J.C., 1977. Ecological relationships among parasites of Spo-doptera praefica. Environ. Entomol. 6: 581–585.CrossRefGoogle Scholar
  63. Mills, N. 2006. Interspecific competition among natural enemies and single versus multiple introductions in biological control. In: Brodeur, J. and Boivin, G. (Eds.). Trophic and Guild Interactions in Biological Control. Springer. Dordrecht. pp. 191–220.CrossRefGoogle Scholar
  64. Mills, N.J. and Lacan, I. 2004. Ratio dependence in the functional response of insect parasitoides: evidence from Trichogramma minutum foraging for eggs in small host patches. Ecol. Entomol. 29: 208–216.CrossRefGoogle Scholar
  65. Morrison, G. and Lewis, W. J. 1981. The allocation of searching time by Trichogramma pretiosum in host-containing patches. Ento-mol. Exp. Appl. 30: 31–39.CrossRefGoogle Scholar
  66. Motulsky, H. and Christopoulos, A. 2003. Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting. GraphPad Software Inc. San Diego.Google Scholar
  67. Nagarkatti, S. and Nagaraja, H. 1977. Biosystematics of Trichogramma and Trichograrnmatoidea species. Annu. Rev. Entomo1. 22: 157–176.CrossRefGoogle Scholar
  68. Neher, D.A. 1999. Soil community composition and ecosystem processes: comparing agricultural ecosystems with natural ecosystems. Agroforest. Syst. 45: 159–185.CrossRefGoogle Scholar
  69. Noldus, L.P.J.J., Lenteren, J.C. van and Lewis, W.J. 1991. How Trichogramma parasitoids use moth sex pheromones as kairo-mones: orientation behaviour in a wind tunnel. Physiol. Ento-mol. 16: 313–327.CrossRefGoogle Scholar
  70. Ozder,N. and Saglam, O. 2005. Overwintering ofthe egg parasitoids Trichogramma brassicae and T. cacoeciae in the Thrace region of Turkey. J. Pest Sci. 78: 129–132.CrossRefGoogle Scholar
  71. Pak, G.A. and Oatman, E.R. 1982. Biology of Trichogramma brevi-capillum. Ent. Exp. App1. 32: 61–67.CrossRefGoogle Scholar
  72. Pennacchio, F. and Strand, M.R. 2006. Evolution of developmental strategies in parasitic Hymenoptera. Annu. Rev. Entomol. 51: 233–258.CrossRefGoogle Scholar
  73. Polaszek A. 2010. Species diversity and host associations of Trichogramma in Eurasia. In: Cônsoli, F.L., Parra, J.R.P. and Zucchi, R.A. (Eds.). Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma. Springer. Dordrecht, pp. 237–266.Google Scholar
  74. Quicke, D.L.J., 1997. Parasitic Wasps. Chapman & Hall, London.Google Scholar
  75. Reay-Jones, F.P.F., Rochat J., Goebel, R. and Tabone, E. 2006. Functional response of Trichogramma chilonis to Galleria mel-lonella and Chilo sacchariphagus eggs. Entomol. Exp. Appl. 118: 229–236CrossRefGoogle Scholar
  76. Rechav, Y. and Orion, T. 1975. The development of the immature stages of Chelonus inanitus. Ann. Entomol. Soc. Am. 68: 457– 462.CrossRefGoogle Scholar
  77. Rodriguez, H., Cabello, T. and Vargas, P. 1988a. Influencia de la dieta en el desarrollo de Ephestia kuehniella. Bol. San. Veg. Pla-gas 14: 363–369.Google Scholar
  78. Rodriguez, H., Cabello, T. and Vargas, P. 1988b. Influencia de la dieta e iluminación en la longevidad, fecundidad y fertilidad de Ephestia kuehniella. Bol. San. Veg. Plagas 14: 561–566.Google Scholar
  79. Rosenheim, J.A. 1998. Higher-order predators and the regulation of insect herbivore populations. Annu. Rev. Entomol. 43:421–47.CrossRefGoogle Scholar
  80. Royer, L., Fournet, S., Brunel, E. and Boivin, G. 1999. Intra- and interspecific host discrimination by host-seeking larvae of cole-opteran parasitoids. Oecologia 118:59–68.CrossRefGoogle Scholar
  81. Scholz, D. and Höller, C, 1992. Competition for host between two hyperparasitoids of aphids, Dentrocerus laticeps and Dendro-cerus carpenter: The benefit of interspecific host discrimination. J. Insect Behav. 5: 289–300.CrossRefGoogle Scholar
  82. Shaw M.R., 1994. Parasitoid host ranges. In: Hawkins B.A. and Sheenhan W. (Eds.), Parasitoid Community Ecology. Oxford University Press, Oxford, pp. 111–144.Google Scholar
  83. Shaw M.R. 2006. Habitat considerations for parasitic wasps (Hymenoptera). J. Insect Conserv. 10: 117–127.CrossRefGoogle Scholar
  84. Shaw, M.R. and Huddleston, T. 1991. Clasification and biology of Braconid waps. Handbooks for the Identification of British insect, vol. 7, part 11. Royal Entomological Society of London, London.Google Scholar
  85. SPSS 2009. Pasw Statistics Base 18. SPSS Inc. Chicago.Google Scholar
  86. Strand, M.R. 1986. The physiological interactions of parasitoids with their hosts and their influence on reproductive strategies. In: Waage J. and Greathead D. (eds.). Insect Parasitoid. Academic, London, pp. 97–136.Google Scholar
  87. Tobias, V.I., 1975. A Review of the Braconidae (Hymenoptera) of the USSR. Publishing Co. PVT. LTD, New Delhi.Google Scholar
  88. Tobias, V.I.,1997. Subfamily Cheloninae. En: Medvedv, G.S. Keys to the Insects of the European Part of the USSR. Vol. III, part IV. Science Publishers Inc. New Delhi, pp. 512–588.Google Scholar
  89. Turlings, T.C.J., Baterburg, F.D.H. van and Strien-van Liempt W.T.F.H. van, 1985. Why is there no interspecific host discrimination in the two coexisting larval parasitoid of Drosophila species: Leptopilina heterotoma and Asorbara tabida. Oecologia 67: 352–359.CrossRefGoogle Scholar
  90. Uka, D., Hiraoka, T. and Iwabuchi K. 2006. Physiological suppression of the larval parasitoid Glyptapantles pallipes by the polyembryonic parasitoid Compidosoma floridanum. J. Insect Physiol. 52: 1137–1142.CrossRefGoogle Scholar
  91. van Driesche, R.G., Hoddle, M.S. and Center, T.D. 2007. Control de plagas y malezas por enemigos naturales. USDA-USFS, Washington.Google Scholar
  92. van Nouhuys, S. and Hanski, I. 2002. Colonization rates and distances of a host butterfly and two specific parasitoids in a fragmented landscape. J. Anim. Ecol. 71: 639–650.CrossRefGoogle Scholar
  93. Vinson, S.B. 1976. Host selection by insect parasitoide. Annu. Rev. Entomol. 21: 109–133.CrossRefGoogle Scholar
  94. Vinson, S.B., 1998. The general host selection behavior of parasitoid Hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biol. Control. 11: 79–96.CrossRefGoogle Scholar
  95. Voegele, J., Brun, P. and Daumal, J. 1974. Les Trichogrammes: 1.-Modalités de la prise de possession et de l’élimination de l’hote chez le parasite embryonnaire Trichogramma brasiliensis. Ann. Soc. Entomol. Fr. 10: 737–761.Google Scholar
  96. Volkoff, A.N., Daumal, J., Barry, P., François, M.C., Hawlitzky, N. and Rossi, M.M. 1995. Development of Trichogramma ca-coeciae: time table and evidence for a single larval instar. Int. J. Insect Morphol. Embryol. 24: 459–466.CrossRefGoogle Scholar
  97. Wajnberg, E., Bernstein, C. and van Alphen, J. (Eds.) 2008. Behavioral Ecology of Insect Parasitoids: From Theoretical Approaches to Field Applications. Blackwell, Malden.CrossRefGoogle Scholar
  98. Wang, B. and Ferro, D.N. 1998. Functional responses of Trichogramma ostriniae to Ostrinia nubilalis under laboratory and field conditions. Environ. Entomol. 27: 752–758.CrossRefGoogle Scholar
  99. Zwölfer, H. 1971. The structure and effect of parasite complexes attacking phytophagous host insect. In: Dynamics of populations. Proceedings of the Advanced Study Institute on Dynamics of Numbers in Populations, Oosterbeek, 1970. Centre AgricPubl Document, Wageningen, pp. 405–416. Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Center for Agribusiness Biotechnology ResearchAlmeria UniversityAlmeriaSpain
  2. 2.Research Group of Theoretical Biology and Ecology, Hungarian Academy of Sciences and Department of Plant Taxonomy and EcologyL. Eötvös UniversityBudapestHungary

Personalised recommendations