Community Ecology

, Volume 11, Issue 1, pp 5–12 | Cite as

Tourism disassembles patterns of co-occurrence and weakens responses to environmental conditions of spider communities on small lake islands

  • W. UlrichEmail author
  • M. Zalewski
  • I. Hajdamowicz
  • M. Stańska
  • W. Ciurzycki
  • P. Tykarski


The impact of disturbance on animal and plant assemblages has been described mainly in terms of aggregate community properties like species richness, abundance, or productivity. However, the question how disturbance acts on species interactions, particularly on patterns of co-occurrence, has received much less attention. Here we use a large pitfall trap sample of spiders from two complexes of lake islands in Northern Poland to show how disturbance by tourist visits affects species richness, composition and co-occurrence. On the pristine and protected islands of Lake Wigry, species co-occurrence was significantly segregated. Further, island species richness and abundances could be predicted from environmental correlates, particularly from island area, soil fertility and humidity. In turn, on the lake islands that are frequently visited by tourists, species co-occurrences were random and environmental correlates other than island area failed to predict species richness and abundances. However, species composition, α-, β-, and γ-diversities, as well as average local spider abundances did not significantly differ between both island complexes. Our results show that disturbance disassembles the structure of spider communities prior to visible richness and abundance effects. This result has implications for biological conservation. The detection of community disassembly might be an early sign for factors that act negatively on ecosystem functioning.


Araneae Community structure Co-occurrence C-score Disturbance Mazurian Lakes Species richness 



Nidzkie, Bełdany and Mikolajski lake complex


Non-metric multidimensional scaling


Principal component analysis


Species - area relationship.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2010_11010005_MOESM1_ESM.pdf (90 kb)
Supplementary material, approximately 92 KB.


  1. Batáry, P., A. Báldi, F. Samu, T. Szűts and S. Erdős. 2008. Are spiders reacting to local or landscape scale effects in Hungarian pastures? Biol. Conserv. 141: 2062–2070.CrossRefGoogle Scholar
  2. Beals, M. L. 2006. Understanding community structure: a data-driven multivariate approach. Oecologia 150: 484–495.CrossRefGoogle Scholar
  3. Begon, M., C. R. Townsend and J. L. Harper. 2006. Ecology. From Individuals to Ecosystems. Blackwell, Oxford.Google Scholar
  4. Bhat, A. and A. E. Magurran. 2007. Does disturbance affect the structure of tropical fish assemblages? A test using null models. J. Fish Biol. 70: 623–629.CrossRefGoogle Scholar
  5. Bonte, D.,L. Baet and J.-P. Maelfait. 2002. Spider assemblage structure and stability in a heterogeneous coastal dune system (Belgium). J. Arachnol. 30: 331–343.CrossRefGoogle Scholar
  6. Buddle, C. M., D. W. Langor, G. R. Pohl and J. R. Spence. 2006. Arthropod responses to harvesting and wildfire: implications for emulation of natural disturbance in forest management. Biol. Conserv. 128: 346–357.CrossRefGoogle Scholar
  7. Bunge J. and M. Fitzpatrick. 1993. Estimating the number of species: A review. J. Am. Stat. Ass. 88: 364–373.Google Scholar
  8. Chase, J. M. and M. A. Leibold. 2003. Ecological Niches. Chicago, Univ. Press, Chicago.CrossRefGoogle Scholar
  9. Chen, K.-C. and I.-M. Tso. 2004. Spider diversity on Orchid island, Taiwan: A comparison between habitats receiving different degrees of human disturbance. Zool. Stud. 43: 598–611.Google Scholar
  10. Chesson,P. and J. J. Kuang. 2008. The interaction between predation and competition. Nature 456: 235–238.CrossRefGoogle Scholar
  11. Christ, C., O Hillel, L. Matus and J. Sweeting. 2003. Tourism and Biodiversity. Conservation International, Washington.Google Scholar
  12. Clough, Y., A. Kruess, D. Kleijn and T. Tscharntke. 2005. Spider diversity in cereal fields: comparing factors at local, landscape and regional scales. J. Biogeogr. 32: 2007–2014.CrossRefGoogle Scholar
  13. Costa de Azevedo, M. C., F. Araujo, A. Pessanha and M. Silva. 2006. Co-occurrence of demersal fishes in a tropical bay in southeastern Brazil: A null model analysis. Estuar Coastal Shelf Science 66: 315–322.CrossRefGoogle Scholar
  14. Death, R. G. 2005. Predicting invertebrate diversity from disturbance regimes in forest streams. Oikos 97: 18–30.CrossRefGoogle Scholar
  15. Diamond, M. 1975. Assembly of species communities. In: M . L. Cody and J. M. Diamond (Eds.), Ecology and Evolution of Communities. Belknap, Harvard, pp. 342–444.Google Scholar
  16. Dormann, C. F. 2007. Promising the future? Global change projections of species distributions. Basic Appl. Ecol. 8: 387–397.CrossRefGoogle Scholar
  17. Diekötter, T., Dirksen, J., Durka, W., Edwards, P.J., Frenzel, M., Hamersky, R., Hendrickx, F., Herzog, F., Klotz, S., Koolstra, B., Lausch, A., Le Coeur, D., Liira, J., Maelfait, J.P., Opdam, P., Roubalova, M., Schermann-Legionnet, A., Schermann, N., Schmidt, T., Smulders, M.J., Speelmans, M., Simova, P., Ver-boom, J., van Wingerden, W. and Zobel, M. 2008. Prediction uncertainty of environmental change effects on temperate European biodiversity. Ecol. Lett. 11: 235–244.CrossRefGoogle Scholar
  18. Dzwonko, Z. 2001. Effect of proximity to ancient deciduous woodland on restoration of the field layer vegetation in a pine plantation. Ecography 24: 198–204.CrossRefGoogle Scholar
  19. Ellenberg, H., H. E. Weber, R. Düll, V. Wirth and W. Werner. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 1–258.Google Scholar
  20. Finch, O.-D., T. Blick and A. Schuldt. 2008. Macroecological patterns of spider species richness across Europe. Biodiv. Conserv. 17: 2849–2868.CrossRefGoogle Scholar
  21. Gillette, N. E., R. S. Vetter, S. R. Mori, C. R. Rudolph and D. R. Welty. 2008. Response of ground-dwelling spider assemblages to prescribed fire following stand structure manipulation in the southern Cascade Range. Can. J. Forest Res. 38: 969–980.CrossRefGoogle Scholar
  22. Gotelli, N. J. 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606–2621.Google Scholar
  23. Gotelli, N. J. and A. E. Arnett. 2000. Biogeographic effects of red fire ant invasion. Ecol. Lett. 3: 257–261.CrossRefGoogle Scholar
  24. Gotelli, N. J. and D. J. McCabe. 2002. Species co-occurrence: a meta-analysis of J.M. Diamond’s assembly rules model. Ecology 83: 2091–2096.Google Scholar
  25. Gotelli, N. J.and G.R. Graves. 1996. Null Models in Ecology. Smithsonian Inst. Press, Washington.Google Scholar
  26. Gotelli, N. J. and W. Ulrich 2009. The Empirical Bayes approach as a tool to identify non-random species associations. Oecologia, in press.Google Scholar
  27. Graham, M. H. 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84: 2809–2815.CrossRefGoogle Scholar
  28. Hsieh, Y. L., Y.-S. Lin and I.-M. Tsao. 2003. Ground spider diversity in a Kenting uplifted coral forest reef forest, Taiwan: a comparison between habitats receiving various disturbances. Biodiv. Conserv. 112: 2173–2194.CrossRefGoogle Scholar
  29. Hutchinson, G. E. 1959. Homage to Santa Rosalia, or why are there so many kinds of animals? Am. Nat. 93: 145–159.CrossRefGoogle Scholar
  30. Ives, A. R. and S. R. Carpenter. 2007. Stability and diversity of ecosystems. Science 317: 58–62.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jimènez-Valverde, A. and J. M. Lobo. 2007. Determinants of local spider (Araneidae and Thomisidae) species richness on a regional scale: climate and altitude vs. habitat structure. Ecol. En-tomol. 32: 113–122.CrossRefGoogle Scholar
  32. Jung, M.-P. 2008. Species diversity and community structure of ground dwelling spiders in unpolluted and moderately heavy metal-polluted habitats. Water Air Soil Poll. 195: 15–22.CrossRefGoogle Scholar
  33. Laiolo, P. 2004. Diversity and the structure of the bird community in the Himalayan subalpine zone: is conservation compatible with tourism? Biol. Conserv. 115: 251–262.CrossRefGoogle Scholar
  34. Larrivee, M., L. Fahrig and P. Drapeau. 2005. Effects of a recent wildfire and clearcuts on ground-dwelling boreal forest spider assemblages. Can. J. Forest Res. 35: 2575–2588.CrossRefGoogle Scholar
  35. Lichstein, J. W., T. R. Simons, S. A. Shriner and K. E. Franzreb. 2002. Spatial autocorrelation and autoregressive models in ecology. Ecol. Monogr. 72: 445–463.CrossRefGoogle Scholar
  36. Loreau, M., S. Naeem and P. Inchausti (eds.) (2002). Biodiversity and Ecosystem Functioning: Synthesis and Perspectives. Oxford, Univ. Press.Google Scholar
  37. Loreau, M., N. Mouquet and A. Gonzalez. 2003. Biodiversity and spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Science USA 100: 12765–12770.CrossRefGoogle Scholar
  38. Mackey, R. L. and D. J. Currie. 2001. The diversity-disturbance relationship: is it generally strong and peaked? Ecology 82: 3479–3492.Google Scholar
  39. Matveinen-Huju, K. and M. Koivula. 2008. Effects of alternative harvesting methods on boreal forest spider assemblages. Can. J. Forest Res. 38:782–794.CrossRefGoogle Scholar
  40. Mądrzejowska, K., and,J. Sklodowski. 2008. Assemblages of carabid beetles (Coleoptera: Carabidae) as zoo-indicator of water tourism impact on forest-lake ecotones. Baltic J. Coleopterol 8:1–14.Google Scholar
  41. Menge, B. A. and J. P. Sutherland. 1987. Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat. 130: 730–757.CrossRefGoogle Scholar
  42. Platnick, N. I. 2009. The World Spider Catalog, version 9.5. American Museum of Natural History.
  43. Rangel, T. F. L., J. A. F. Diniz-Filho and L. M. Bini. 2006. Towards an integrated computational tool for spatial analysis in macroe-cology andbiogeography. Glob. Ecol. Biogeogr. 15: 321–327.CrossRefGoogle Scholar
  44. Reaser, J. K., L. A. Meyerson, Q. Cronk, M. De Poorter, L. G. Eldrege, E. Green., M. Kairo, P. Latasi, R. N. Mack, J. Mauremootoo, D. O’Dowd, W. Orapa, S. Sastroutomo, A. Sauners, C. Shine, S. Thrainsson and L. Vaiutu. 2007. Ecological and socioeconomic impacts of invasive alien species in island ecosystems. Env. Conserv. 34: 98–111.CrossRefGoogle Scholar
  45. Rehage, J. S. and J. C. Trexler. 2006. Assessing the net effect of anthropogenic disturbance on aquatic communities in wetlands: community structure relative to distance from canals. Hydro-biol. 569: 359–373.CrossRefGoogle Scholar
  46. Rypstra, A. L., P. E. Carter, R. A. Balfour and S. D. Marshall. 1999. Architectural features of agricultural habitats and their impact on the spider inhabitants. J. Arachnol. 27: 371–377.Google Scholar
  47. Sanders, N. J., N. J. Gotelli, N. E. Heller and D. M. Gordon. 2003. Community disassembly by an invasive species. Proc. Natl. Acad. Science USA 100: 2474–2477.CrossRefGoogle Scholar
  48. Sanders, N. J., N. J. Gotelli, S. I. Wittman, J. S. Ratchford, A. M. Ellison and E. S. Jules. 2007. Assembly rules of ground-foraging ant assemblages are contingent on disturbance, habitat and spatial scale. J. Biogeogr. 34: 1632–1641.CrossRefGoogle Scholar
  49. Sarà, M., E. Bellia and A. Milazzo. 2006. Fire disturbance disrupts co-occurrence patterns of terrestrial vertebrates in Mediterranean woodlands. J. Biogeogr. 33: 843–852.CrossRefGoogle Scholar
  50. Schaffers, A. P. and K. V. Sykora. 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J. Veg. Sci. 11: 225–244.CrossRefGoogle Scholar
  51. Scheffler, P. Y. 2005. Dung beetle (Coleoptera: Scarabaeidae) diversity and community structure across three disturbance regimes in eastern Amazonia. J. Trop. Ecol. 21: 9–19.CrossRefGoogle Scholar
  52. Schmidt, M. H, I. Roschewitz, C. Thies and T. Tscharntke. 2005. Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J. Appl. Ecol. 42: 281–287.CrossRefGoogle Scholar
  53. Schmidt, M. H, C. Thies, W. Nentwig and T. Tscharntke. 2008. Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J. Biogeogr. 35: 157–166.Google Scholar
  54. Shea, K., S. H. Roxburgh and E. S. J. Rauschert. 2004. Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes. Ecol. Lett. 7: 491–508.CrossRefGoogle Scholar
  55. Skłodowski, J., J. Sater and T. Strzyżewski. 2006. Impact of water tourism activity in forest/waterside ecotones on the example of the Bełdany Lake. Sylwan 10: 65–71 (in Polish).Google Scholar
  56. Stone, L. and A. Roberts. 1990. The checkerboard score and species distributions. Oecologia 85: 74–79.CrossRefGoogle Scholar
  57. Stone, L. and A. Roberts. 1992. Competitive exclusion or species aggregation? An aid in deciding. Oecologia 91: 419–424.CrossRefGoogle Scholar
  58. Taylor, C. M., T. L. Holder, R. A. Fiorillo, R. A. Williams, R. B. Thomas and M. L. Warren Jr. 2006. Distribution, abundance, and diversity of stream fishes under variable environmental conditions. Can. J. Fish. Aquat. Sci. 63: 43–54.CrossRefGoogle Scholar
  59. Tylianakis, J. M., T. Tscharntke and A.-M. Klein. 2006. Diversity, ecosystem functioning, and stability of parasitoid –host interactions across a tropical habitat gradient. Ecology 87: 3047–3057.CrossRefGoogle Scholar
  60. Ulrich, W. 2004. Species co-occurrences and neutral models: reassessing J. M. Diamond’s assembly rules. Oikos 107: 603–609.CrossRefGoogle Scholar
  61. Ulrich, W. 2006. CoOccurrence - a Fortran program for species co-occurrence analysis.
  62. Ulrich, W. 2008. Pairs – a Fortran program for studying pair wise species associations in ecological matrices.
  63. Ulrich W. and N. J. Gotelli. 2007. Disentangling community patterns of nestedness and species co-occurrence. Oikos 116: 2053–2061.CrossRefGoogle Scholar
  64. Ulrich W., Zalewski M. and K. Komosiński. 2007. Diversity of carrion visiting beetles at rural and urban sites. Community Ecol. 8: 171–181.CrossRefGoogle Scholar
  65. Wilbur, H. M. 1987. Regulation of structure in complex systems: experimental temporary pond communities. Ecology 68: 1437–1452.CrossRefGoogle Scholar
  66. Wilkinson, D. M. 1999. The disturbing history of intermediate disturbance. Oikos 84: 145–147.CrossRefGoogle Scholar
  67. Witman, J. D. 1992. Physical disturbance and community structure of exposed and protected reefs: a case study from St. John, U.S. Virgin Islands. Am. Zool. 32: 641–654.CrossRefGoogle Scholar
  68. Zalewski, M. and W. Ulrich. 2006. Dispersal as a key element of community structure: The case of ground beetles on lake islands. Divers. Distrib. 12: 767–775.CrossRefGoogle Scholar
  69. Zarzycki, K., H. Trzcińska-Tacik, W. Różański, Z. Szelag, J. Wołek and U. Korzeniak. 2002. Ecological Indicator Values of Vascular Plants of Poland. W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • W. Ulrich
    • 1
    Email author
  • M. Zalewski
    • 2
  • I. Hajdamowicz
    • 3
  • M. Stańska
    • 3
  • W. Ciurzycki
    • 4
  • P. Tykarski
    • 5
  1. 1.Department of Animal EcologyNicolaus Copernicus University in ToruńToruńPoland
  2. 2.Centre for Ecological ResearchPolish Academy of SciencesDziekanów LeśnyPoland
  3. 3.Department of ZoologyUniversity of PodlasieSiedlcePoland
  4. 4.Faculty of Forestry, Department of Forest BotanyWarsaw University of Life Sciences SGGWWarsawPoland
  5. 5.Department of Ecology, Faculty of BiologyUniversity of WarsawWarsawPoland

Personalised recommendations