Advertisement

Community Ecology

, Volume 11, Issue 1, pp 84–90 | Cite as

Is soil salinity one of the major determinants of community structure under arid environments?

  • N. Naz
  • M. HameedEmail author
  • M. Sajid Aqeel Ahmad
  • M. Ashraf
  • M. Arshad
Article

Abstract

Five distinct habitats along salinity gradient were explored for plant ecological attributes including soil plant interaction, vegetation composition and species distribution in the Cholistan desert. Higher saline sites supported Sporobolus ioclados with Aeluropus lagopoides, Cymbopogon jwarancusa, Ochthochloa compressa, Haloxylon recurvum and Suaeda fruticosa, whereas moderately saline habitats supported predominantly Fagonia indica, C. jwarancusa and O. compressa. The community structure and composition of each habitat type were very specific, the most dominant component being S. ioclados. Each species has very specific relation to different environmental variables, and this reflects the habitat status, ecological adaptations and stress tolerance degree of the individual species. On the whole, it can be concluded that salinity alone was not responsible for the distribution of species at salt affected habitats.

Keywords

CCA Halophytes Soil pH Soil salinity Species distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd El-Ghani, M.M. 2000. Vegetation composition of Egyptian inland saltmarshes. Bot. Bull. Acad. Sin. 41: 305–314.Google Scholar
  2. Abu-Ziada, M.E.A. 1980. Ecological studies on the flora of Kharga and Dakhla Oases of the Western Desert of Egypt. Ph.D. Thesis, Faculty of Science, Mansoura University. pp. 342.Google Scholar
  3. Aragón, C.F., M. Méndez and A. Escudero. 2009. Survival costs of reproduction in a short-lived perennial plant: Live hard, die young. Am. J. Bot. 96: 904–911.CrossRefGoogle Scholar
  4. Arshad, M. and A.R. Rao. 1995. Phytogeographical divisions of Cholistan desert. Cholistan institute of desert studies, Islamia University, Bahawalpur and University of Agriculture, Faisala-bad. Proc 6th All Pak Geog Conf 55–61.Google Scholar
  5. Arshad, M., Anwar-ul-Hussan, M.Y. Ashraf, S. Noureen and M. Moazzam. 2008. Edaphic factors and distribution of vegetation in the Cholistan desert, Pakistan. Pak. J. Bot. 40: 1923–1931.Google Scholar
  6. Ashraf, M. and N. Yasmin. 1997. Responses of some arid zone grasses to brackish water. Tropenlandwirt. 98: 3–12.Google Scholar
  7. Asri, Y. 1993. Some ecological characteristics of halophyte plant associations in western margin of Uromieh Lake. J. Res. Const. 18: 21–25.Google Scholar
  8. Asri, Y. and M. Ghorbanli. 1997. The halophilous vegetation of the Orumieh Lake salt marshes, NW. Iran. Plant Ecol. 132: 155–170.CrossRefGoogle Scholar
  9. Austin, D.F. and S. Ghazanfar. 1979. Convolvulaceae. In: E. Nasir and S.I. Ali (eds.). Flora of Pakistan, No. 126. National Herbarium, Pakistan Agricultural Research Council, Islamabad. pp. 64.Google Scholar
  10. Black, C.A. 1965. Methods of Soil Analysis. Part 2. Amer. Society of Agronomy Inc., Publisher Medisson, Wilconsin, USA. pp. 1372–1376.Google Scholar
  11. Bodla, M.A., M.R. Chaudhry, S.R.A. Shamsi and M.S. Baig. 1995. Salt tolerance in some dominant grasses of Punjab. In: M.A. Khan and I.A. Ungar (eds.), Biology of Salt Tolerant Plants. Book Crafters, Michigan, USA. pp. 190–198.Google Scholar
  12. Caballero, J.M., M.A. Esteve, J.F. Calvo and J.A. Pujol. 1994. Structure of the vegetation of salt steppes of Guadelenitin (Murcia, Spain). Oecologia 10–11: 171–183.Google Scholar
  13. Carrow, R.N. and R.R. Duncan. 1998. Salt-Affected Turfgrass Sites: Assessment and Management. Ann Arbor Press, Chelsea, MI (John Wiley and Sons, Inc., Hoboken, NJ).Google Scholar
  14. Cope, T.A. 1982. Poaceae. In: E. Nasir and S.I. Ali (eds.), Flora of Pakistan, No. 143. Department of Botany, University of Karachi. pp. 679.Google Scholar
  15. Dagar J.C. 1998. Vegetation of salt affected soils and its scope for agroforestry interventions. Int. J. Ecol. Environ. Sci. 24: 49–57.Google Scholar
  16. Drenovsky, R.E. and J.H. Richards. 2003. High nitrogen availability does not improve salinity tolerance in Sarcobatus vermiculatus. W. N. Am. Natur. 63: 472–478.Google Scholar
  17. Flowers, T.J. 1975. Halophytes. In: D.A. Barker and J.L. Hall (eds.), Ion Transport in Cells and Tissues. North-Holland, Amsterdam, pp. 309–334.Google Scholar
  18. Flowers, T.J. and T.D. Colmer. 2008. Salinity tolerance in halo-phytes. New Phytol. 179: 945–963.CrossRefGoogle Scholar
  19. Freitag, H., I.C. Hedge, S.M.H. Jafri, G. Kothe-Henrich, S. Omer and P. Uotila. 2001. Chenopodiaceae. In: S.I. Ali and M. Qaiser (eds.), Flora of Pakistan, No. 204. Department of Botany, University of Karachi, Karachi, Pakistan and Missouri Botanical Garden, St. Louis, USA.Google Scholar
  20. Ghafoor, A. 1974. Zygophyllaceae. In E. Nasir and S.I. Ali (eds.). Flora of West Pakistan, Univ. of Karachi, Karachi.Google Scholar
  21. Gulzar, S. and M.A. Khan. 2001. Seed germination of a halophytic grass Aeluropus lagopoides. Ann. Bot. 87: 319–324.CrossRefGoogle Scholar
  22. Gulzar, S, M.A. Khan and I.A. Ungar. 2003. Effects of salinity on growth, ionic content, and plant-water status of Aeluropus lagopoides. Comm. Soil Sci. Plant Anal. 34: 1657–1668.CrossRefGoogle Scholar
  23. Hameed, M. and M. Ashraf. 2008. Physiological and biochemical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range (Pakistan) to salinity stress. Flora 203: 683–694.CrossRefGoogle Scholar
  24. Hameed, M., A.A. Chaudhry, M.A. Maan and A.H. Gill. 2002. Diversity of plant species in Lal Suhanra National Park, Ba-hawalpur. Pak. J. Biol. Sci. 2: 267–274.CrossRefGoogle Scholar
  25. Hegazy, A.K., J. Lovett-Doust, O. Hammouda and N.H. Gomaa. 2008. Vegetation distribution along the altitudinal gradient in the northwestern Red Sea region. Community Ecol. 8: 151–162.CrossRefGoogle Scholar
  26. Herbst, D.B. 2001. Gradients of salinity stress, environmental stability and water chemistry as a template for defining habitat types and physiological strategies in inland salt waters. Hydrobiologia 466: 209–219.CrossRefGoogle Scholar
  27. Hoveizeh, H. 1997. Study of the vegetation cover and ecological characteristics in saline habitats of Hoor-e-Shadegan. J. Res. Const. 34: 27–31.Google Scholar
  28. Hussain, F. 1983. Manual of Plant Ecology. University Grants Commission, Sector H-8, Islamabad.Google Scholar
  29. Iqbal, M.Z., N. Yasmin and M. Shafiq. 2002. Salt tolerance variation in some common trees. Acta Bot. Hung. 44: 67–74.CrossRefGoogle Scholar
  30. Jafari, M. 1989. Survey of relationship between salinity agents and distribution of plants in Damghan region. MSc. Thesis, Natural Resources College of Tarbiat Modarres University.Google Scholar
  31. Jafari, M., M.A. Zare Chahouki, A. Tavili, H. Azarnivand and G.H. Zahedi Amiri. 2004. Effective environmental factors in the distribution of vegetation types in Poshtkouh rangelands of Yazd Province (Iran). J. Arid Environ. 56: 627–641.CrossRefGoogle Scholar
  32. Jafari, M., S.M. Chalak-Haghighi, S.H. Habibian and H. Azarnivand. 2003. Valuation some of Atriplex lentiformiss effects on vegaetation characters in cultivation areas. J. Iran Nat. Res. 56: 301–320.Google Scholar
  33. James, J.J., R.L. Tiller and J.H. Richards. 2005. Multiple resources limit plant growth and function in a saline-alkaline desert community. J. Ecol. 93:113–126.CrossRefGoogle Scholar
  34. Kasera, P.K. and S. Mohammed. 2009. Ecology of Inland saline plants. In: K.G. Ramawat (ed.), Desert Plants: Biology and Biotechnology. Springer-Verlag. pp. 410.Google Scholar
  35. Khan, M.A. 1998. Some aspects of salinity, plant density, and nutrient effects on Cressa cretica L. J. Plant Nutr. 21: 769–784.CrossRefGoogle Scholar
  36. Khan, M.A. and S. Gulzar. 2003. Germination responses of Sporobolus ioclados: a saline desert grass. J. Arid Environ. 53: 387–394.CrossRefGoogle Scholar
  37. Khan, M.A, M.Z. Ahmed and A. Hameed. 2006. Effect of sea salt and l-ascorbic acid on the seed germination of halophytes. J. Arid Environ. 67: 535–540.CrossRefGoogle Scholar
  38. Kluse, J.S. and B.H. Allen Diaz. 2005. Importance of soil moisture and its interaction with competition and clipping for two mountain meadow grasses. Plant Ecol. 176: 87–99.CrossRefGoogle Scholar
  39. Körner, C.H. 1994. Scaling from species to vegetation: The usefulness of functional groups. In: E.D. Schulze and H.A. Mooney (eds), Biodiversity and Ecosystem Function. Springer, Berlin. pp. 117–140.CrossRefGoogle Scholar
  40. Kowalenko, C.G. and L.E. Lowe. 1973. Determination of nitrates in soil extracts. Soil Sci. Soc. Am. Proc. 37: 660.CrossRefGoogle Scholar
  41. Ludwig, J.A. and J.F. Reynolds. 1988. Statistical Ecology: A Primer on Methods and Computing. John Wiley, New York.Google Scholar
  42. Marignani, M., E. Vico and S. Maccherini. 2008. Performance of indicators and the effect of grain size in the discrimination of plant communities for restoration purposes. Community Ecol. 9: 201–206.CrossRefGoogle Scholar
  43. Maryam, H., S. Ismail, F. Alaa and R. Ahmed. 1995. Studies on growth and salt regulation in some halophytes as influenced by edaphic and climatic conditions. Pak. J. Bot. 27: 151–163.Google Scholar
  44. Milovic, M. and L. Markovic. 2003. Cressa cretica L. (Convolvu-laceae) in the flora of Croatia. Natura Croatica 12: 9–18.Google Scholar
  45. Mughal, M.R. 1997. Ancient Cholistan-Archeology and Architecture. Ferozsons (Pvt.) Ltd. Lahore.Google Scholar
  46. Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol 59: 651–81.CrossRefGoogle Scholar
  47. Naz, N., M. Hameed, A. Wahid, M. Arshad and M.S.A. Ahmad. 2009. Patterns of ion excretion and survival in two stoloniferous arid zone grasses. Physiol. Plant. 135: 185–195.CrossRefGoogle Scholar
  48. Rao, A.R. and S.D. Baber. 1990. Conservation and genetic erosion studies of Chingi and Cholistan forests. Annual Research Report, World Wildlife Fund Project. Univ. Agri., Faisalabad, Pakistan.Google Scholar
  49. Steel, R.G.D., J.H. Torrie and D.A. Dickie. 1997. Principles and Procedures of Statistics. A Biometric Approach. 3 edn. McGraw-Hill Publishing Company, Toronto.Google Scholar
  50. Yoshida, S., D.A. Forno, J.H. Cock and K.A. Gomez. 1976. Laboratory Manual for Physiological Studies of Rice. IRRI Philippines.Google Scholar
  51. Zhang, J.T., Y. Xi and J. Li. 2006. The relationships between environment and plant communities in the middle part of Taihang Mountain Range, North China. Community Ecol. 7: 155–163.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • N. Naz
    • 1
  • M. Hameed
    • 1
    Email author
  • M. Sajid Aqeel Ahmad
    • 1
  • M. Ashraf
    • 1
    • 3
  • M. Arshad
    • 2
  1. 1.Department of BotanyUniversity of AgricultureFaisalabadPakistan
  2. 2.Cholistan Institute of Desert Studies (CIDS)BahawalpurPakistan
  3. 3.King Saud UniversityRiyadhSaudi Arabia

Personalised recommendations