Advertisement

Community Ecology

, Volume 10, Issue 2, pp 146–151 | Cite as

Epigeic spider (Araneae) assemblages of natural forest edges in the Kiskunság (Hungary)

  • R. GalléEmail author
  • A. Torma
Article

Abstract

Natural habitat edges are known to influence the vegetation structure, the microclimate and thereby the invertebrate assemblages. We studied the spiders of two forest edges in the forest-steppe zone of the Great Hungarian Plain (Site 1: a dense juniper shrub – open grassland and Site 2: a juniper and poplar forest – open grassland edge, respectively). The spider assemblages were sampled with pitfall traps arranged in 5 × 20 grid at the habitat edges. Observed and estimated species richness was higher for the grasslands than for the forests. Rényi’s diversity ordering was applied to compare species diversity. The results showed that the grasslands were more diverse in terms of spider species than the forests. The composition of spider assemblages was significantly different between the two habitat types. At Site 2, a higher number forest specialists penetrated into the grassland. Presumably this was due to the shading effect of the nearby poplar trees. Constrained ordinations also revealed a strong influence of the neighbouring poplar trees and vegetation structure on the spider assemblages. No exclusively edge associated species were found on either of the two sharp forest edges.

Keywords

Diversity ordering Juniper Poplar Sand grassland 

Abbreviations

N

number of individuals

S

number of species

Nomenclature

Platnick (2008) for spiders Simon (2000) for plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2009_1002146_MOESM1_ESM.pdf (19 kb)
Supplementary material, approximately 20 KB.

References

  1. Anderson, M.J. 2001. A new method fornon-parametric multivariate analysis of variance. Austral. Ecol. 26:32–46.Google Scholar
  2. Asteraki, E.J., B.J. Hart, T.C. Ings and W.J. Manley. 2004. Factors influencing the plant and invertebrate diversity of arable field margins. Agric. Ecosys. Environ. 102:219–231.CrossRefGoogle Scholar
  3. Baldissera, R., G. Ganade, and S.B. Fontoura. 2004. Web spider community response along an edge between pasture and Araucaria forest. Biol. Conserv. 118:403–409.CrossRefGoogle Scholar
  4. Batáry, P., A. Báldi, F. Samu, T. Szûts and S. Erdős. 2008. Are spiders reacting to local or landscape scale effects in Hungarian pastures? Biol. Conserv. 141:2062–2070.CrossRefGoogle Scholar
  5. Bell, J.R., C.P. Wheater and W. R. Cullen. 2001. The implications of grassland and heathland management for the conservation of spider communities: a review. J. Zool. 255:377–387.CrossRefGoogle Scholar
  6. Birkhofer, K., D. H. Wise and S. Scheu. 2008. Subsidy from the detrital food web, but not microhabitat complexity, affects the role of generalist predators in an aboveground herbivore food web. Oikos 117:494–500.CrossRefGoogle Scholar
  7. Bonte, D., L. Baert and J.-P. Maeflait. 2002. Spider assemblage structure and stability in a heterogeneous coastal dune system (Belgium). J. Arachnol. 30:331–343.CrossRefGoogle Scholar
  8. Burgess, V.J., D. Kelly, A.W. Robertson and J.J. Ladley. 2001. Positive effects of forest edges on plant reproduction: literature review and a case study of bee visitation to flowers of Peraxilla tetrapetala (Loranthaceae). Plant Ecol. 153:347–359.CrossRefGoogle Scholar
  9. Chao, A., W.-H. Hwang , Y.-C. Chen and C.-Y. Kuo. 2000. Estimating the number of shared species in two communities. Statistica Sinica 10:227–246.Google Scholar
  10. Chao, A., R. L.Chazdon, R.K. Colwell and T.-J. Shen. 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8:148–159.CrossRefGoogle Scholar
  11. Chazdon, R. L., R.K. Colwell, J.S. Denslow and M.R. Guariguata. 1998. Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. In: F. Dallmeier and J. A. Comiskey (eds.) Forest Biodiversity Research, Monitoring and Modeling: Conceptual Background and Old World Case Studies. Parthenon Publishing, Paris. pp. 285–309Google Scholar
  12. Colwell, R. K. 2004. EstimateS, Version 8.0: Statistical Estimation of Species Richness and Shared Species from Samples (Software and User’s Guide). Freeware for Windows and Mac OS. Available at http://viceroy.eeb.uconn.edu/EstimateS.Google Scholar
  13. Cronin, J. T., K.J. Haynes and F. Dillemuth. 2004. Spider effects on planthopper mortality, dispersal, and spatial popular dynamics. Ecology 85:2134–2143.CrossRefGoogle Scholar
  14. Dangerfield, J.M., A. J. Pik, D. Britton, A. Holmes, M. Gillings, I. Oliver, D. Briscoe and A. J. Beattie. 2003. Patterns of invertebrate biodiversity across a natural edge. Austral. Ecol. 28:227–236.CrossRefGoogle Scholar
  15. Dennis, P., R. Y. Mark and C. Bentley. 2001. The effects of varied grazing management on epigeal spiders, harvestmen and pseudoscorpions of Nardus stricta grassland in upland Scotland. Agric. Ecosyst. Environ. 86:39–57.CrossRefGoogle Scholar
  16. Dutoit, T., E. Buisson, E. Gerbaud, P. Roche and T. Tatoni. 2007. The status of transitions between cultivated fields and their boundaries: ecotones, ecoclines or edge effects? Acta Oecol. 31:127–136.CrossRefGoogle Scholar
  17. Entling, W., M.H. Schmidt, S. Bacher, R. Brandl and W. Nentwig. 2007. Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Global Ecol. Biogeogr. 16:440–448.CrossRefGoogle Scholar
  18. Ferguson, S. H. 2004. Influence of edge on predator–prey distribution and abundance. Acta Oecol. 25:111–117.CrossRefGoogle Scholar
  19. Finch, O.D. 2005. Evaluation of mature confer plantation as secondary habitat for epigeic forest arthropods (Coleoptera: Carabidae; Araneae). Forest Ecol. Manage. 204: 21–34.CrossRefGoogle Scholar
  20. Gallé, R. 2008. The effect of a naturally fragmented landscape on the spider assemblages. North-Western J. Zool. 4: 61–71Google Scholar
  21. Gallé, R. and B. Fehér. 2006. Edge effect on spider assemblages. Tiscia 35:37–40.Google Scholar
  22. Hammer O, D.A.T. Harper, P.D. Ryan. 2001. PAST: paleontological statistics software package for education and data analysis. Paleontologica Electronica 4:9.Google Scholar
  23. Heikkinen, M.W. and J.A. MacMahon. 2004. Assemblages of spiders on models of semi-arid shrubs. J. Arachnol. 32:313–323.CrossRefGoogle Scholar
  24. Horváth, R., T. Magura, G. Péter and B. Tóthmérész. 2002. Edge effect on weevils and spiders. Web Ecol. 3:43–47.CrossRefGoogle Scholar
  25. Kallimanis A.S., M.D. Argyropoulou and S.P. Sgardelis. 2002. Two scale patterns of spatial distribution of oribatid mites (Acari, Cryptostigmata) in a Greek mountain. Pedobiologia 46:513–525.CrossRefGoogle Scholar
  26. Kindt, R. 2008. The Biodiversity R Package. R package ver. 1.2. URL http://cran.r-project.org/.Google Scholar
  27. Kotze, D.J. and M.J. Samways. 2001. No general edge effect for invertebrates at Afromontane forest/grassland ecotones. Biodivers. Conserv. 10: 443–466.CrossRefGoogle Scholar
  28. Leps, J. and P. Smilauer. 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  29. Maelfait, J.P., L. Baert, D. Bonte, D. De Bakker, S. Gurdebeke and F. Hendrickx. 2002 The use of spiders as indicators of habitat quality and anthropogenic disturbance in Flanders, Belgium. In: F. Samu and Cs. Szinetár (eds.), European Arachnology 2002. Plant Protection Institute and Berzsenyi College, Budapest. pp. 129–141.Google Scholar
  30. Maelfait, J. P. and R. De Keer. 1990. The border zone of an intensively grazed pasture as a corridor for spiders (Araneae). Biol. Conserv. 54:223–238.CrossRefGoogle Scholar
  31. Magura, T. and B. Tóthmérész. 1997. Testing edge effect on carabid assemblages in an oak-hornbeam forest. Acta Zool. Acad. Sci. Hung. 43:303–312.Google Scholar
  32. Magura, T. and B. Tóthmérész. 1998. Edge effect on Carabids in an Oak-Hornbeam forest at the Aggtelek National Park (Hungary). Acta Phytopathol. Entomol. Hung. 33:379–387.Google Scholar
  33. Magura, T., B. Tóthmérész and Zs. Bordán. 2002. Carabids in an oak-hornbeam forest: testing the edge effect hypothesis. Acta Biol. Debrecina 24:55–72.Google Scholar
  34. Martin, T.J. and R. E. Major. 2001. Changes in wolf spider (Araneae) assemblages across woodland–pasture boundaries in the central wheat-belt of New South Wales, Australia. Austral. J. Ecol. 26:264–274.CrossRefGoogle Scholar
  35. Máthé, I. 2006. Forest edge and carabid diversity on a Carpathian beech forest. Community Ecol. 7:90–97.CrossRefGoogle Scholar
  36. Molnár, T., T. Magura, B. Tóthmérész and Z. Elek. 2001. Ground beetles (Carabidae) and edge effecting oak-hornbeam forest and grassland transects. Eur. J. Soil Biol. 37:297–300.CrossRefGoogle Scholar
  37. Muff, P. 2006. Do differences in distance between pitfall traps influence the capture rates of ground-dwelling spiders (Arachnida: Araneae)? Manuscript, Universität Bern, 9 pp.Google Scholar
  38. Muff, P., C. Kropf, H. Frick, W. Nentwig and M.H. Schmidt-Entling. 2009. Coexistence of divergent communities at natural boundaries: spider (Arachnida: Araneae) diversity across an alpine timberline. Insect Conserv. Diver. 2:36–44.CrossRefGoogle Scholar
  39. Murcia, C. 1995. Edge effect in fragmented forests: implications for conservation. Trends Ecol. Evol. 10:58–62.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Oksanen, J., R. Kindt, P. Legendre and R.B. O’Hara. 2006. VEGAN: Community Ecology Package. R package ver. 1.8–3. URL http://cran.r-project.org/.Google Scholar
  41. Pearce, J.L., L.A. Venier, G. Eccles, J. Pedlar and K. McKenney. 2004. Influence of habitat and microhabitat on epigeal spider (Araneae) assemblages in four stand types. Biodiver. Conserv. 13:1305–1334.CrossRefGoogle Scholar
  42. Platnick, N.I. 2009. The World Spider Catalog, Version 10.0. URL http://research.amnh.org/entomology/spiders/catalog/Google Scholar
  43. R Development Core Team 2007. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.Google Scholar
  44. Raizer, J. and M.E.C Amaral. 2001. Does the structural complexity of aquatic macrophites explain the diversity of associated spider assemblages? J. Arachnol. 29:227–237.CrossRefGoogle Scholar
  45. Robinson, J.V. 1981. The effect of architectural variation in habitat on a spider community: An experimental field study. Ecology 62:73–80.CrossRefGoogle Scholar
  46. Samu, F., K.D. Sunderland and Cs. Szinetár. 1999. Scale-dependent dispersal and distribution patterns of spiders in agricultural systems: A review. J. Arachnol. 27:325–332.Google Scholar
  47. Samu, F., A. Szirányi and B. Kiss. 2003. Foraging in agricultural fields: local ‘sit-and-move’ strategy scales up to risk-averse habitat use in a wolf spider. Animal Behav. 66:939–947.CrossRefGoogle Scholar
  48. Sanders, D., H. Nickel, T. Grützner and C. Platner. 2008. Habitat structure mediates top–down effects of spiders and ants on herbivores. Basic App. Ecol. 9:152–160.CrossRefGoogle Scholar
  49. Simon, T. 2000. A magyarországi edényes flóra határozója (Guide to the Hungarian Vascular Flora). Nemzeti Tankönyvkiadó, Budapest.Google Scholar
  50. Tóthmérész, B. 1993. DivOrd 1.50: A Program for diversity ordering. Tiscia 27:33–44.Google Scholar
  51. Tóthmérész, B. 1995. Comparsion of different methods for diversity ordering. J. Veg. Sci. 6:283–290.CrossRefGoogle Scholar
  52. Uetz, G.W. 1979. The influence of variation in litter habitats on spider communities. Oecologia (Berlin) 40:29–42.CrossRefGoogle Scholar
  53. Uetz, G.W. 1991. Habitat structure and spider foraging. In: Bell, S.S., McCoy, E.D., Mushinsky, H.R. (eds.), Population and Community Biology Series. Chapman and Hall, London. pp. 325–348.Google Scholar
  54. Ysnel, F. and A. Canard. 2000. Spider biodiversity in connection with the vegetation structure and the foliage orientation of hedges. J. Arachnol. 28:107–114.CrossRefGoogle Scholar
  55. Ziesche, T.M. and M. Roth. 2007. Influence of environmental parameters on small-scale distribution of soil-dwelling spiders in forests: What makes difference, the tree species or the microhabitat? Forest Ecol. Manage. 255:738–752.CrossRefGoogle Scholar
  56. Zólyomi, B. 1987. Coenotone, ecotone and their role of preserving relic species. Acta Bot. Hung. 33:3–18.Google Scholar
  57. Zulka, K.P., N. Milasowszky and C. Lethmayer. 1997. Spiders biodiversity of an ungrazed and grazed inland salt meadow in the national park ‘Neusiedler See-Seewinkel’ (Austria): implications for management. Biodiver. Conserv. 6:75–88.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of EcologyUniversity of SzegedSzegedHungary

Personalised recommendations