Epigeic spider (Araneae) assemblages of natural forest edges in the Kiskunság (Hungary)
Abstract
Natural habitat edges are known to influence the vegetation structure, the microclimate and thereby the invertebrate assemblages. We studied the spiders of two forest edges in the forest-steppe zone of the Great Hungarian Plain (Site 1: a dense juniper shrub – open grassland and Site 2: a juniper and poplar forest – open grassland edge, respectively). The spider assemblages were sampled with pitfall traps arranged in 5 × 20 grid at the habitat edges. Observed and estimated species richness was higher for the grasslands than for the forests. Rényi’s diversity ordering was applied to compare species diversity. The results showed that the grasslands were more diverse in terms of spider species than the forests. The composition of spider assemblages was significantly different between the two habitat types. At Site 2, a higher number forest specialists penetrated into the grassland. Presumably this was due to the shading effect of the nearby poplar trees. Constrained ordinations also revealed a strong influence of the neighbouring poplar trees and vegetation structure on the spider assemblages. No exclusively edge associated species were found on either of the two sharp forest edges.
Keywords
Diversity ordering Juniper Poplar Sand grasslandAbbreviations
- N
number of individuals
- S
number of species
Nomenclature
Platnick (2008) for spiders Simon (2000) for plantsPreview
Unable to display preview. Download preview PDF.
Supplementary material
References
- Anderson, M.J. 2001. A new method fornon-parametric multivariate analysis of variance. Austral. Ecol. 26:32–46.Google Scholar
- Asteraki, E.J., B.J. Hart, T.C. Ings and W.J. Manley. 2004. Factors influencing the plant and invertebrate diversity of arable field margins. Agric. Ecosys. Environ. 102:219–231.CrossRefGoogle Scholar
- Baldissera, R., G. Ganade, and S.B. Fontoura. 2004. Web spider community response along an edge between pasture and Araucaria forest. Biol. Conserv. 118:403–409.CrossRefGoogle Scholar
- Batáry, P., A. Báldi, F. Samu, T. Szûts and S. Erdős. 2008. Are spiders reacting to local or landscape scale effects in Hungarian pastures? Biol. Conserv. 141:2062–2070.CrossRefGoogle Scholar
- Bell, J.R., C.P. Wheater and W. R. Cullen. 2001. The implications of grassland and heathland management for the conservation of spider communities: a review. J. Zool. 255:377–387.CrossRefGoogle Scholar
- Birkhofer, K., D. H. Wise and S. Scheu. 2008. Subsidy from the detrital food web, but not microhabitat complexity, affects the role of generalist predators in an aboveground herbivore food web. Oikos 117:494–500.CrossRefGoogle Scholar
- Bonte, D., L. Baert and J.-P. Maeflait. 2002. Spider assemblage structure and stability in a heterogeneous coastal dune system (Belgium). J. Arachnol. 30:331–343.CrossRefGoogle Scholar
- Burgess, V.J., D. Kelly, A.W. Robertson and J.J. Ladley. 2001. Positive effects of forest edges on plant reproduction: literature review and a case study of bee visitation to flowers of Peraxilla tetrapetala (Loranthaceae). Plant Ecol. 153:347–359.CrossRefGoogle Scholar
- Chao, A., W.-H. Hwang , Y.-C. Chen and C.-Y. Kuo. 2000. Estimating the number of shared species in two communities. Statistica Sinica 10:227–246.Google Scholar
- Chao, A., R. L.Chazdon, R.K. Colwell and T.-J. Shen. 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8:148–159.CrossRefGoogle Scholar
- Chazdon, R. L., R.K. Colwell, J.S. Denslow and M.R. Guariguata. 1998. Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. In: F. Dallmeier and J. A. Comiskey (eds.) Forest Biodiversity Research, Monitoring and Modeling: Conceptual Background and Old World Case Studies. Parthenon Publishing, Paris. pp. 285–309Google Scholar
- Colwell, R. K. 2004. EstimateS, Version 8.0: Statistical Estimation of Species Richness and Shared Species from Samples (Software and User’s Guide). Freeware for Windows and Mac OS. Available at http://viceroy.eeb.uconn.edu/EstimateS.Google Scholar
- Cronin, J. T., K.J. Haynes and F. Dillemuth. 2004. Spider effects on planthopper mortality, dispersal, and spatial popular dynamics. Ecology 85:2134–2143.CrossRefGoogle Scholar
- Dangerfield, J.M., A. J. Pik, D. Britton, A. Holmes, M. Gillings, I. Oliver, D. Briscoe and A. J. Beattie. 2003. Patterns of invertebrate biodiversity across a natural edge. Austral. Ecol. 28:227–236.CrossRefGoogle Scholar
- Dennis, P., R. Y. Mark and C. Bentley. 2001. The effects of varied grazing management on epigeal spiders, harvestmen and pseudoscorpions of Nardus stricta grassland in upland Scotland. Agric. Ecosyst. Environ. 86:39–57.CrossRefGoogle Scholar
- Dutoit, T., E. Buisson, E. Gerbaud, P. Roche and T. Tatoni. 2007. The status of transitions between cultivated fields and their boundaries: ecotones, ecoclines or edge effects? Acta Oecol. 31:127–136.CrossRefGoogle Scholar
- Entling, W., M.H. Schmidt, S. Bacher, R. Brandl and W. Nentwig. 2007. Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Global Ecol. Biogeogr. 16:440–448.CrossRefGoogle Scholar
- Ferguson, S. H. 2004. Influence of edge on predator–prey distribution and abundance. Acta Oecol. 25:111–117.CrossRefGoogle Scholar
- Finch, O.D. 2005. Evaluation of mature confer plantation as secondary habitat for epigeic forest arthropods (Coleoptera: Carabidae; Araneae). Forest Ecol. Manage. 204: 21–34.CrossRefGoogle Scholar
- Gallé, R. 2008. The effect of a naturally fragmented landscape on the spider assemblages. North-Western J. Zool. 4: 61–71Google Scholar
- Gallé, R. and B. Fehér. 2006. Edge effect on spider assemblages. Tiscia 35:37–40.Google Scholar
- Hammer O, D.A.T. Harper, P.D. Ryan. 2001. PAST: paleontological statistics software package for education and data analysis. Paleontologica Electronica 4:9.Google Scholar
- Heikkinen, M.W. and J.A. MacMahon. 2004. Assemblages of spiders on models of semi-arid shrubs. J. Arachnol. 32:313–323.CrossRefGoogle Scholar
- Horváth, R., T. Magura, G. Péter and B. Tóthmérész. 2002. Edge effect on weevils and spiders. Web Ecol. 3:43–47.CrossRefGoogle Scholar
- Kallimanis A.S., M.D. Argyropoulou and S.P. Sgardelis. 2002. Two scale patterns of spatial distribution of oribatid mites (Acari, Cryptostigmata) in a Greek mountain. Pedobiologia 46:513–525.CrossRefGoogle Scholar
- Kindt, R. 2008. The Biodiversity R Package. R package ver. 1.2. URL http://cran.r-project.org/.Google Scholar
- Kotze, D.J. and M.J. Samways. 2001. No general edge effect for invertebrates at Afromontane forest/grassland ecotones. Biodivers. Conserv. 10: 443–466.CrossRefGoogle Scholar
- Leps, J. and P. Smilauer. 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
- Maelfait, J.P., L. Baert, D. Bonte, D. De Bakker, S. Gurdebeke and F. Hendrickx. 2002 The use of spiders as indicators of habitat quality and anthropogenic disturbance in Flanders, Belgium. In: F. Samu and Cs. Szinetár (eds.), European Arachnology 2002. Plant Protection Institute and Berzsenyi College, Budapest. pp. 129–141.Google Scholar
- Maelfait, J. P. and R. De Keer. 1990. The border zone of an intensively grazed pasture as a corridor for spiders (Araneae). Biol. Conserv. 54:223–238.CrossRefGoogle Scholar
- Magura, T. and B. Tóthmérész. 1997. Testing edge effect on carabid assemblages in an oak-hornbeam forest. Acta Zool. Acad. Sci. Hung. 43:303–312.Google Scholar
- Magura, T. and B. Tóthmérész. 1998. Edge effect on Carabids in an Oak-Hornbeam forest at the Aggtelek National Park (Hungary). Acta Phytopathol. Entomol. Hung. 33:379–387.Google Scholar
- Magura, T., B. Tóthmérész and Zs. Bordán. 2002. Carabids in an oak-hornbeam forest: testing the edge effect hypothesis. Acta Biol. Debrecina 24:55–72.Google Scholar
- Martin, T.J. and R. E. Major. 2001. Changes in wolf spider (Araneae) assemblages across woodland–pasture boundaries in the central wheat-belt of New South Wales, Australia. Austral. J. Ecol. 26:264–274.CrossRefGoogle Scholar
- Máthé, I. 2006. Forest edge and carabid diversity on a Carpathian beech forest. Community Ecol. 7:90–97.CrossRefGoogle Scholar
- Molnár, T., T. Magura, B. Tóthmérész and Z. Elek. 2001. Ground beetles (Carabidae) and edge effecting oak-hornbeam forest and grassland transects. Eur. J. Soil Biol. 37:297–300.CrossRefGoogle Scholar
- Muff, P. 2006. Do differences in distance between pitfall traps influence the capture rates of ground-dwelling spiders (Arachnida: Araneae)? Manuscript, Universität Bern, 9 pp.Google Scholar
- Muff, P., C. Kropf, H. Frick, W. Nentwig and M.H. Schmidt-Entling. 2009. Coexistence of divergent communities at natural boundaries: spider (Arachnida: Araneae) diversity across an alpine timberline. Insect Conserv. Diver. 2:36–44.CrossRefGoogle Scholar
- Murcia, C. 1995. Edge effect in fragmented forests: implications for conservation. Trends Ecol. Evol. 10:58–62.CrossRefPubMedPubMedCentralGoogle Scholar
- Oksanen, J., R. Kindt, P. Legendre and R.B. O’Hara. 2006. VEGAN: Community Ecology Package. R package ver. 1.8–3. URL http://cran.r-project.org/.Google Scholar
- Pearce, J.L., L.A. Venier, G. Eccles, J. Pedlar and K. McKenney. 2004. Influence of habitat and microhabitat on epigeal spider (Araneae) assemblages in four stand types. Biodiver. Conserv. 13:1305–1334.CrossRefGoogle Scholar
- Platnick, N.I. 2009. The World Spider Catalog, Version 10.0. URL http://research.amnh.org/entomology/spiders/catalog/Google Scholar
- R Development Core Team 2007. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.Google Scholar
- Raizer, J. and M.E.C Amaral. 2001. Does the structural complexity of aquatic macrophites explain the diversity of associated spider assemblages? J. Arachnol. 29:227–237.CrossRefGoogle Scholar
- Robinson, J.V. 1981. The effect of architectural variation in habitat on a spider community: An experimental field study. Ecology 62:73–80.CrossRefGoogle Scholar
- Samu, F., K.D. Sunderland and Cs. Szinetár. 1999. Scale-dependent dispersal and distribution patterns of spiders in agricultural systems: A review. J. Arachnol. 27:325–332.Google Scholar
- Samu, F., A. Szirányi and B. Kiss. 2003. Foraging in agricultural fields: local ‘sit-and-move’ strategy scales up to risk-averse habitat use in a wolf spider. Animal Behav. 66:939–947.CrossRefGoogle Scholar
- Sanders, D., H. Nickel, T. Grützner and C. Platner. 2008. Habitat structure mediates top–down effects of spiders and ants on herbivores. Basic App. Ecol. 9:152–160.CrossRefGoogle Scholar
- Simon, T. 2000. A magyarországi edényes flóra határozója (Guide to the Hungarian Vascular Flora). Nemzeti Tankönyvkiadó, Budapest.Google Scholar
- Tóthmérész, B. 1993. DivOrd 1.50: A Program for diversity ordering. Tiscia 27:33–44.Google Scholar
- Tóthmérész, B. 1995. Comparsion of different methods for diversity ordering. J. Veg. Sci. 6:283–290.CrossRefGoogle Scholar
- Uetz, G.W. 1979. The influence of variation in litter habitats on spider communities. Oecologia (Berlin) 40:29–42.CrossRefGoogle Scholar
- Uetz, G.W. 1991. Habitat structure and spider foraging. In: Bell, S.S., McCoy, E.D., Mushinsky, H.R. (eds.), Population and Community Biology Series. Chapman and Hall, London. pp. 325–348.Google Scholar
- Ysnel, F. and A. Canard. 2000. Spider biodiversity in connection with the vegetation structure and the foliage orientation of hedges. J. Arachnol. 28:107–114.CrossRefGoogle Scholar
- Ziesche, T.M. and M. Roth. 2007. Influence of environmental parameters on small-scale distribution of soil-dwelling spiders in forests: What makes difference, the tree species or the microhabitat? Forest Ecol. Manage. 255:738–752.CrossRefGoogle Scholar
- Zólyomi, B. 1987. Coenotone, ecotone and their role of preserving relic species. Acta Bot. Hung. 33:3–18.Google Scholar
- Zulka, K.P., N. Milasowszky and C. Lethmayer. 1997. Spiders biodiversity of an ungrazed and grazed inland salt meadow in the national park ‘Neusiedler See-Seewinkel’ (Austria): implications for management. Biodiver. Conserv. 6:75–88.CrossRefGoogle Scholar
Copyright information
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.