Advertisement

Community Ecology

, Volume 10, Issue 1, pp 75–80 | Cite as

The influence of habitat heterogeneity on the fine-scale pattern of an Heteroptera assemblage in a sand grassland

  • A. TormaEmail author
  • L. Körmöczi
Article

Abstract

The influence of elevation and vegetation characteristics on the spatial pattern of an epigeic true bug assemblage was investigated along a transect in a sandy grassland of Kiskunság. A 55 m long transect through wind grooves and dune tops, perpendicular to the vegetation borders was established. Both the moving split window technique and the ordination method revealed that dune top habitat has a distinct Heteroptera assemblage. This sand dune habitat was characterized by the most abundant Heteroptera species. We did not observe a distinct true bug assemblage in the wind groove habitat. Canonical correspondence analysis and multiple linear regressions showed that the relative altitude had a greater effect on the distribution of true bugs than vegetation cover and plant species richness.

Keywords

Epigeic true bugs Habitat transition Sand dune 

Abbreviations

CCA

Canonical Correspondence Analysis

MSW

Moving Split Window

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakonyi, G. and T. Vásárhelyi. 1987. The Heteroptera fauna of the Kiskunság National Park. In: S. Mahunka (ed.) The Fauna of the Kiskunság National Park. Vol. II. Akadémiai Kiadó, Budapest. pp. 85–108.Google Scholar
  2. Benton, T.G., J.A. Vickery. and J.D. Wilson. 2003. Farmland biodiversity: is habitat heterogeneity the key? Trends in Ecology and Evolution 18:182–188.CrossRefGoogle Scholar
  3. Bieringer, G. and K.P. Zulka. 2003. Shading out species richness: edge effect of a pine plantation on the Orthoptera (Tettigoniidae and Acrididae) assemblage of an adjacent dry grassland. Biodiver. Conserv. 12:1481–1495.CrossRefGoogle Scholar
  4. Bröring, U. and G. Wiegleb. 2005. Soil zoology II: Colonization, distribution, and abundance of terrestrial Heteroptera in open landscapes of former brown coal mining areas. Ecol. Engineering 24:135–147.CrossRefGoogle Scholar
  5. Cao, Y., D.P. Larsen and R. St.-J. Thorne. 2001. Rare species in multivariate analysis for bio-assessment: some considerations. J. N. Am. Benthol. Soc. 20:144–153.CrossRefGoogle Scholar
  6. Chase, M.K., W.B. Kristan, A.J. Lynam, M.V. Price and J.T. Roten-berry. 2000. Single species as indicators of species richness and composition in California coastal sage scrub birds and small mammals. Conserv. Biol. 14:474–487.CrossRefGoogle Scholar
  7. Cornelius, J.M. and J.F. Reynolds. 1991. On determining the statistical significance of discontinuities within ordered ecological data. Ecology 72:2057–2070.CrossRefGoogle Scholar
  8. Dennis, P., M.R. Young and J. Gordon. 1998. Distribution and abundance of small insects and arachnids in relation to structural heterogeneity of grazed, indigenous grassland. Ecol. Entomol. 23:253–264.CrossRefGoogle Scholar
  9. Di Giulio, M., P.J. Edwards and E. Meister. 2001. Enhancing insect diversity in agricultural grasslands: the roles of management and landscape structure. J.App. Ecol. 38:310–319.CrossRefGoogle Scholar
  10. Dolling, W.R. 1991. The Hemiptera. Oxford University Press, Oxford.Google Scholar
  11. Duelli, P. and M. Obrist. 1998. In search of the best correlates for local organismal biodiversity in cultivated areas. Biodiver. Conserv. 7:297–309.CrossRefGoogle Scholar
  12. Gallé, L., Gy. Györffy, E. Hornung and L. Körmöczi. 1988. Indication of environmental heteromorphy and habitat fragmentation by invertebrate communities in grasslands. In: J. Bohac and V. Ruzicka (eds.), Proc. Vth Int. Conf. Bioindicatores Deteriorisationis Regionis, Inst. Landscape Ecology CAS, Ceské Budéjovice. pp. 167–170.Google Scholar
  13. Gallé, L., Gy. Györffy, L. Körmöczi, G. D-Szőnyi and B. Harmath. 1987. Különböző közösségtípusok élőhely heterogenitás indikációja homokpusztai gyepen. Környezet- és Természetvédelmi Kutatások 6:230–271.Google Scholar
  14. Gallé, R., A. Torma and L. Körmöczi. 2007. Epigeic invertebrate assemblages (Aranae, Heteroptera) of natural forest edges –Preliminary results. In: K. Tajovský, J. Schlaghamerrský and V. Pi□l (eds.), Contributions to Soil Zoology in Central Europe II České Budějovice. pp. 47–52.Google Scholar
  15. Guido, M. and D. Gianelle. 2001. Distribution patterns of four orthoptera species in relation to microhabitat heterogenity in an ecotonal area. Acta Oecol. 22:175–185.CrossRefGoogle Scholar
  16. Györffy, Gy. and T. Pollák. 1983. Habitat specialization of leafhopper community living in a sandy soil grassland. Acta Biol. Szeged. 29:153–158.Google Scholar
  17. Harmat, B. 1984. Szünbiológiai vizsgálatok homokpusztai gyep Heteroptera-közösségein. PhD thesis. p. 93.Google Scholar
  18. Hennenberg, K.J., D. Goetze, L. Kouamé, B. Orthmann and S. Porembski. 2005. Border and ecotone detection by vegetation composition along forest-savanna transects in Ivory Coast. J. Veg. Sci. 16:301–310.CrossRefGoogle Scholar
  19. Horváth, A. 1998. INFOTHEM program: new possibilities of spatial series analysis based on information theory methods. Tiscia 31:71–84.Google Scholar
  20. Horváth, R., T. Magura, G. Péter and B. Tóthmérész. 2002. Edge effect on weevils and spiders. Web Ecol. 3:43–47.CrossRefGoogle Scholar
  21. Kerényi, Z. 1997. Poloskaközösség szerkezetváltozásai diszturbációs hatásokra homokpusztai gyepen. MSc Thesis. p. 39.Google Scholar
  22. Knowlton, G. F. 1967. Grass bugs: A serious range problem in 1966. Utah Acad. Sci. Arts and Letters 43: 20–21.Google Scholar
  23. Kondorossy, E. 1999. Checklist of the Hungarian bug fauna (Het-eroptera). Folia Entomol. Hung. 60:125–152.Google Scholar
  24. Körmöczi, L. 1983. Correlations between the zonation of sandy grasslands and the physico-chemical condition of their soil in Bugac. Acta Biol. Szeged. 29:117–127.Google Scholar
  25. Körmöczi, L., L. Gallé, Gy. Györffy and K. Margóczi. 2000. Successional dynamics of sand dune plant and invertebrate communities: the role of stress and disturbances. In: K. Lajtha and K. Vanderbilt (eds), Coopoeration in Long Term Ecological Research in Central and Eastern Europe, Oregon State University, Corvallis, USA. pp. 77–83.Google Scholar
  26. Körmöczi, L. 2005. On the sensitivity and significance test of vegetation boundary detection. Community Ecol. 6:75–81.CrossRefGoogle Scholar
  27. Körmöczi, L., Gy. Bodrogközy and I. Horváth. 1981. Investigation of biological production and bioclimate of sandy grassland in Bugac. Acta Biol. Szeged. 27:55–69.Google Scholar
  28. Leps, J., V. Novotny and Y. Basset. 2001. Habitat and succesional status of plants in relation to the communities of their leaf-chewing herbivores in Papua New Guinea. J. Ecol. 89:186–199.CrossRefGoogle Scholar
  29. Lyons, J., S. Navarro-Perez, P.A. Cochran, C.E. Santana and M. Guzman-Arroyo. 1995. Index of biotic integrity based on fish assamblages for the conservation of streams and rivers in west-cenral Mexico. Conserv. Biol. 9:569–584.CrossRefGoogle Scholar
  30. Maelfait, J. P. and R. De Keer. 1990. The border zone of an intensively grazed pasture as a corridor for spiders (Araneae). Biol. Conserv. 54:223–238.CrossRefGoogle Scholar
  31. Magura, T. and B. Tóthmérész. 1997. Testing edge effect on carabid assemblages in an oak-hornbeam forest. Acta Zool. Acad. Sci. Hung. 43:303–312.Google Scholar
  32. Magura, T. and B. Tóthmérész. 1998. Edge effect on carabids in an oak-hornbeam forest at the Aggtelek National Park (Hungary). Acta Phytopathol. Entomol. Hung. 33:379–387.Google Scholar
  33. Magura, T. 2002. Carabids and forest edge: spatial pattern and edge effect. Forest Ecol. Manage. 157:23–37.CrossRefGoogle Scholar
  34. Martin, T.J. and R.E. Major. 2001. Changes in wolf spider (Araneae) assemblages across woodland–pasture boundaries in the central wheat-belt of New South Wales, Australia. Austral. Ecol. 26:264–274.CrossRefGoogle Scholar
  35. Murdock, W.W., F.C. Evans. and C.H. Peterson. 1972. Diversity and pattern in plants and insects. Ecology 53:819–829.CrossRefGoogle Scholar
  36. Oksanen, J., R. Kindt, P. Legendre and R.B. O’Hara. 2006. Vegan: Community Ecology Package version 1.8–3. https://doi.org/cran.r-project.org.
  37. Oksanen, J. 2008. Multivariate analysis of ecological communities in R: vegan tutorial. https://doi.org/cran.r-project.org.
  38. R Development Core Team 2007. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL https://doi.org/www.R-project.org.
  39. Rushton, S.P., M. Luff and M.D. Eyre. 1991. Habitat characteristics of grassland Pterostichus species (Coleoptera: Carabidae). Ecol. Entomol. 16:91–104.CrossRefGoogle Scholar
  40. Samu, F. and M. Sárospataki. 1995. Design and use of a hand-hold suction sampler, and its comparison with sweep net and pitfall trap sampling. Folia Entomol. Hung. 56:195–203.Google Scholar
  41. Sanderson, R.A., S.P. Rushton, A.J. Cherrill and J.P. Byrne. 1995. Soil, vegetation and space: an analysis of their effects on the invertebrate communities of a moorland in north-east England. J. App.Ecol. 32:506–518.CrossRefGoogle Scholar
  42. Standen, V. 2000. The adequacy of collecting techniques for estimating species richness of grassland invertebrates. J. App. Ecol. 37:884–893.CrossRefGoogle Scholar
  43. Spungis, V. 2005. Fauna and ecology of bugs (Hemiptera, Heteroptera) in the coastal gray dunes in Latvia. Latvijas Entomologs 42:95–105.Google Scholar
  44. Ter Braak, C.J. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179.CrossRefGoogle Scholar
  45. van der Maarel, E. 1976. On the establishment of plant community boundaries. Berichte der Deutschen Botanischen Gesellschaft 89:415–443.Google Scholar
  46. van der Maarel, E. 1990. Ecotones and ecoclines are different. Journal of Vegetation Science 1:135–138.CrossRefGoogle Scholar
  47. Voigt, W., J. Perner, A.J. Davis, T. Eggers, J. Schumacher, R. Bährmann, B. Fabian, W. Heinrich, G. Köhler, D. Lichter, R. Marstaller and F. Sander. 2003. Trophic levels are differentially sensitive to climate. Ecology 84:2444–2453.CrossRefGoogle Scholar
  48. Whittaker, R. H. 1956. Vegetation of the Great Smoky Mountains. Ecol. Monog. 26:1–80.CrossRefGoogle Scholar
  49. Zalatnai, M. and L. Körmöczi. 2004. Fine-scale pattern of theboundary zones in alkaline grassland communities. Community Ecol. 5:235–246.CrossRefGoogle Scholar
  50. Zalatnai, M., L. Körmöczi and T. Tóth. 2008. Community boundaries and edaphic factors in saline-sodic grassland communities along an elevation gradient. Tiscia 36:7–15.Google Scholar
  51. Zurbrügg, C. and T. Frank. 2006. Factors influencing bug diversity (Insecta: Heteroptera) in semi-natural habitats. Biodiver. Con-serv. 15:275–294.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of EcologyUniversity of SzegedSzegedHungary

Personalised recommendations