Advertisement

Community Ecology

, Volume 10, Issue 1, pp 65–73 | Cite as

Old-field succession related to soil nitrogen and moisture, and the importance of plant species traits

  • R. SzabóEmail author
  • K. Prach
Article

Abstract

Old-fields (44, aged 1–15 years, from Czech Republic and Hungary) were sorted according to their soil moisture and nitrogen content into wet, mesic or dry, and nutrient poor, moderate or nutrient rich categories, resulting in 8 combinations (dry and nutrient rich fields were not present). The vegetation of old fields was sampled using phytosociological relevès. The changes in species cover data and importance of species trait categories were analysed in relation to three environmental factors, i.e., time since abandonment, soil moisture and total soil nitrogen using ordination, generalized linear models (GLM) and regression tree methods. Successional seres in the first 15 years after field abandonment were divergent. Species diversity significantly decreased with increasing site moisture and was highest in sites with moderate nitrogen content; while the relationship with time was not significant. Raunkiaer life forms and life strategies (sensu Grime) were generally the most predictive species traits considering species occurrence during the course of succession, the type of dispersal considering the different moisture status, and the ability to lateral spread considering the nutrient status of the old-fields. Most trends appeared in both parametric GLM and non-parametric regression tree analyses, several only in GLM. We consider regression trees to be a more convenient tool than GLM in cases such as ours with a rather small number of samples and robust character of data. Another advantage is that a hierarchy of species traits is taken into account. Thus, the occurrence of a species along an environmental gradient can be predicted if the species possesses a certain combination of traits.

Keywords

Generalized Linear Models Ordination Regression tree Soil fertility Species cover Species trait categories 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baskin, C.C. and J.M. Baskin. 1998. Seeds. Ecology, Biogeography and Evolution of Dormancy and Germination. Academic Press, San Diego.Google Scholar
  2. de Bello, F., J. Leps and M-T. Sebastiá. 2005. Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean. J. Appl. Ecol. 42: 824–833.CrossRefGoogle Scholar
  3. Bonn, S., P. Poschlod and O. Tackenberg. 2000. Diasporus - a database for diaspore dispersal - concept and applications in case studies for risk assessment. Zeitschrift für Ökologie und Naturschutz 9: 85–97.Google Scholar
  4. Brown, V.K. 1992. Plant succession and life history strategy. Trends Ecol. Evol. 7: 143–144.CrossRefGoogle Scholar
  5. Cramer, V.A. and R.J. Hobbs (eds.). 2007. Old fields: Dynamics and Restoration of Abandoned Farmland. Island Press, Washington.Google Scholar
  6. Csecserits, A. and T. Rédei. 2001. Secondary succession on sandy old-fields in Hungary. Appl. Veg. Sci. 4: 63–74.CrossRefGoogle Scholar
  7. Csontos, P. 2001. A természetes magbank kutatásának módszerei. (Research Methods of Natural Soil Seed Bank.) Synbiol. Hung. 4. Scientia, Budapest.Google Scholar
  8. Dobson, A.J. 2002. An Introduction to Generalized Linear Models. Texts in Statistical Analysis. Chapman and Hall/CRC Boca Raton, Florida.Google Scholar
  9. Dostál, J. 1950. Flora of Czechoslovakia. Academia, Praha.Google Scholar
  10. Ellenberg, H., H.E. Weber, R. Düll, V. Wirth, W. Werner and D. Paulissen. 1991. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 1–248.Google Scholar
  11. Fenner, M. 1987. Seed characteristics in relation to succession. In: A.J. Gray, M.J. Crawley and P.J. Edwards (eds.), Colonization, Succession and Stability. Blackwell, Oxford. pp. 103–114.Google Scholar
  12. Fenner, M. and K. Thompson. 2005. The Ecology of Seeds. Cambridge Univ. Press, Cambridge.CrossRefGoogle Scholar
  13. Flynn, S., R.M. Turner and W.H. Stuppy. 2006. Seed Information Database (release 7.0) https://doi.org/www.kew.org/data/sid. Cited Nov. 2006.
  14. Fukami, T., T.M. Bezemer, S.R. Mortimer and W.H. van der Puten. 2005. Species divergence and trait convergence in experimental plant community assembly. Ecol. Lett. 8: 1283–1290.CrossRefGoogle Scholar
  15. Gibson, C.W.D. and V.K. Brown. 1991. The effects of grazing on local colonization and extinction during early succession. J. Veg. Sci. 2: 291–300.CrossRefGoogle Scholar
  16. Glenn-Lewin, D.C., R.K. Peet and T.T. Veblen. 1992. Plant Succession: Theory and Prediction. Chapman and Hall, London etc.Google Scholar
  17. Grime, J.P. 2001. Plant Strategies and Vegetation Processes. 2nd Ed. Wiley, Chichester.Google Scholar
  18. Grime, J.P. 2006. Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. J. Veg. Sci. 17: 255–260.CrossRefGoogle Scholar
  19. Grime, J.P., J.G. Hodgson and R. Hunt. 1988. Comparative Plant Ecology. Unwyn Hyman, London.CrossRefGoogle Scholar
  20. Horváth, F., K.Z. Dobolyi., T. Morschhauser, L. Lökös, L. Karasand and T. Szerdahelyi. 1995. FLÓRA Adatbázis 1.2. Taxon-lista és attribútum-állomány. (Flora Database 1.2. List of Taxa and Attributes). Vácrátót–Budapest.Google Scholar
  21. Hothorn, T., K. Hornik and A. Zeileis. 2006. Unbiased Recursive Partitioning: A Conditional Inference Framework. J. Comp. Graph. Stat. 15:651–674.CrossRefGoogle Scholar
  22. Huston, M. and T. Smith. 1987. Plant succession: life history and competition. Am. Nat. 130: 168–198.CrossRefGoogle Scholar
  23. Jackel, A.K., A. Dannemann, O. Tackenberg, M. Kleyer and P. Poschlod. 2006. BIOPOP: BioPop - funktionelle Merkmale von Pflanzen und deren Anwendungsmöglichkeiten im Arten-, Bio-top-und Naturschutz. Naturschutz und Biologische Vielfalt 32: 1–168.Google Scholar
  24. King, W.M. and J.B. Wilson. 2006. Differentiation between native and exotic plant species in a dry grassland: realized responses to perturbation, and comparison with fundamental responses. Austral. Ecol. 31: 984–995.CrossRefGoogle Scholar
  25. Klaudisová, A. 1974. Succession in abandoned fields in the Bohemian Karst. MS Thesis, Charles University, Prague.Google Scholar
  26. Klotz, S., I. Kühn and W. Durka (eds.). 2002. BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38. Bonn, Bundesamt für Naturschutz.Google Scholar
  27. Milberg, P., L. Andersson and K. Thompson. 2000. Large-seeded species are less dependent on light for germination than small-seeded ones. Seed Sci. Res. 10: 99–104.CrossRefGoogle Scholar
  28. Mitsch, W.J. and J.G. Gosselink. 1986. Wetlands. van Nostrand Reinhold Company, New York.Google Scholar
  29. Neuhäuslova, Z., D. Blazkova, V. Grulich, M. Husova, M. Chytry, J. Jenik, J. Jirasek, J. Kolbek, Z. Kropac, V. Lozek, J. Moravec, K. Prach, K. Rybnicek, E. Rybnickova and J. Sadlo. 1998. Map of Potential Natural Vegetation of the Czech Republic. Academia, Prague.Google Scholar
  30. Noble, I.R. and R.O. Slatyer. 1980. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43: 5–21.CrossRefGoogle Scholar
  31. Osbornová, J., M. Kovářová, J. Lepš and K. Prach (eds.). 1990. Succession in Abandoned Fields: Studies in Central Bohemia, Czechoslovakia. Dordrecht, Kluwer.Google Scholar
  32. Prach, K., J. Lepš and M. Rejmánek. 2007. Old field succession in central Europe: local and regional patterns. In: C.A. Cramer and R.J. Hobbs (eds.), Old fields: Dynamics and Restoration of Abandoned Farmland. Island Press, Washington.Google Scholar
  33. Prach, K. and P. Pyšek. 1999. How do species dominating in succession differ from others? J. Veg. Sci. 10: 383–392.CrossRefGoogle Scholar
  34. Prach, K., P. Pyšek and P. Šmilauer. 1997. Species traits changing during succession: a search for pattern. Oikos 79: 201–205.CrossRefGoogle Scholar
  35. Prach, K., P. Pyšek and P. Šmilauer. 1999. Prediction of vegetation succession in human-disturbed habitats using an expert system. Rest. Ecol. 7: 15–23.CrossRefGoogle Scholar
  36. R Development Core Team. 2006. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL https://doi.org/www.R-project.org.
  37. Řehounková, K. and K. Prach. 2009. Life-history traits and habitat preferences of colonizing plant species in long-term spontaneous succession in abandoned gravel-sand pits. Basic Appl. Ecol. (in press).Google Scholar
  38. Rejmánek, M. and K.P. van Katwyk. 2004. Old-field succession: A bibliographic review (1901–1991). Available via https://doi.org/botanika.bf.jcu.cz/suspa/. Cited Nov 2006.
  39. Rydin, H. and S-O. Borgegård. 1991. Plant characteristics over a century of primary succession on islands: Lake Hjälmaren. Ecology 72: 1089–1101.CrossRefGoogle Scholar
  40. Simon, T. 2000. A magyarországi edényes flóra határozója (Guide to the Hungarian Vascular Flora). Nemzeti Tankönyvkiadó, Budapest.Google Scholar
  41. Strasser, H. and C. Weber. 1999. On the asymptotic theory of permutation statistics. Mathematical Methods of Statistics. 8: 220–250.Google Scholar
  42. ter Braak, C.J.F. and P. Šmilauer. 2002. CANOCO Release 4. Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination. Microcomputer Power, Ithaca, NY.Google Scholar
  43. Therneau, T.M. and E.J. Atkinson. 1997. An Introduction to Recursive Partitioning Using the rpart Routine. Technical Report 61, Mayo Clinic, Section of Statistics, USA.Google Scholar
  44. Thompson, K., J.P. Bakker and R.M. Bekker. 1997. Soil Seed Banks of North-West Europe: Methodology, Density and Longevity. Cambride University Press, Cambridge.Google Scholar
  45. Thuiller, W., M.B. Araújo and S. Lavorel. 2003. Generalized models vs. classification tree analysis: Predicting spatial distribution of plant species at different scales. J. Veg. Sci. 14: 669–680.CrossRefGoogle Scholar
  46. Tilman, D. 1988. Dynamics and Structure of Plant Communities. Princeton University Press, Princeton.Google Scholar
  47. Török, K., T. Szili-Kovács, M. Halassy, T. Tóth, Zs. Hayek, M.W. Paschke and L.J. Wardell. 2000. Immobilization of soil nitrogen as a possible method for the restoration of sandy grassland. Appl. Veg. Sci. 3: 7–14.CrossRefGoogle Scholar
  48. Vassyères, M.P., R.E. Plant and B.H. Allen-Diaz. 2000. Classification trees: An alternative non-parametric approach for predicting species distributions. J. Veg. Sci. 11: 679–694.CrossRefGoogle Scholar
  49. Vile, D., B. Shipley and E. Garnier. 2006. A structural equation model to integrate changes in functional strategies during old-field succession. Ecology 87: 504–517.CrossRefGoogle Scholar
  50. Walker, L.R. and R. del Moral. 2003. Primary Succession and Ecosystem Rehabilitation. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  51. Zar, J.H. 1999. Biostatistical Analysis. Prentice Hall, New Jersey.Google Scholar
  52. Zólyomi, B. 1989. Map of the Natural Vegetation of Hungary. In: M. Pécsi (ed.), National Atlas of Hungary. Cartographia, Budapest.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of Ecology and BotanyHungarian Academy of SciencesVácrátótHungary
  2. 2.Department of Botany, Faculty of Biological SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Institute of BotanyAcademy of Sciences of the Czech RepublicTřeboňCzech Republic

Personalised recommendations