Community Ecology

, Volume 10, Issue 1, pp 45–52 | Cite as

A synthetic approach for analyzing tropical tree spatial patterns through time

  • M. D. Leithead
  • M. AnandEmail author
  • L. Deeth
Open Access


Spatial patterns of tropical tree populations may contribute to the identification of underlying ecological mechanisms such as dispersal, competition and pest and pathogen pressure. Classical structure functions for quantifying spatial patterns have limitations, for example, although Ripley’s K function is useful for identifying differences in spatial patterns through space, this makes it difficult to identify differences in spatial patterns through time. To complement Ripley’s K function, we use the Thomas process, a point pattern model, to quantify temporal changes in spatial patterns for five tropical tree species known to have density-dependent mortality from species-specific pests and/or pathogens on Barro Colorado Island, Panama. We fit the data of each species to the model to estimate the cluster size (σ) and density of cluster centres (ρ). We compared spatial patterns based on the pair correlation function of the Thomas process determined from σ and ρ. We found reduced clustering over the past 20 years for Ocotea whitei (Lauraceae) and Quararibea asterolepis (Bombacaceae), the two species with the best-documented cases of pathogen and pest outbreaks on BCI, suggesting support for the Janzen-Connell Hypothesis; however, we reject the hypothesis because neither species showed spatial regularity throughout the census period. We found that the Thomas process point pattern model used in concordance with Ripley’s K function and other classical structure functions in ecology can be a simplified and powerful method for testing hypotheses regarding changing spatial patterns of populations through time.


Barro Colorado Island El Niño Pair correlation function Spatial point patterns Thomas process 



Barro Colorado Island


Janzen-Connell Hypothesis


  1. Batista, J.L.F. and D.A. Maguire. 1998. Modeling the spatial structure of tropical forests. For. Ecol. Manage. 110: 293–314.CrossRefGoogle Scholar
  2. Bell, T., R.P. Freckleton and O.T. Lewis. 2006. Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecol. Lett. 9: 569–574.CrossRefGoogle Scholar
  3. Clark, D.A. and D.B. Clark. 1984. Spacing dynamics of a tropical rain forest tree: evaluation of the Janzen-Connell model. Am. Nat. 124: 769–788.CrossRefGoogle Scholar
  4. Clark, D.B. and D.A. Clark. 1985. Seedling dynamics of a tropical tree: impacts of herbivory and meristem damage. Ecology 66: 1884–1892.CrossRefGoogle Scholar
  5. Condit, R. 1998. Tropical Forest Census Plots. Springer-Verlag and R. G. Landes Company, Berlin, Germany, and Georgetown, Texas.CrossRefGoogle Scholar
  6. Condit, R., S.P. Hubbell and R.B. Foster. 1995. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol. Monog. 65: 419–439.CrossRefGoogle Scholar
  7. Condit, R., P.S. Ashton, P. Baker, S. Bunyavejchewin, S. Gunatilleke, N. Gunatilleke, S.P. Hubbell, R.B. Foster, A. Itoh, J.V. LaFrankie, H. Seng-Lee, E. Losos, N. Manokaran, R. Sukumar and T. Yamakura. 2000. Spatial patterns in the distribution of tropical tree species. Science 288: 1414–1418.CrossRefGoogle Scholar
  8. Condit, R., S.P. Hubbell and R.B. Foster. 2005. Barro Colorado forest census plot data. URL
  9. Connell, J.H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and rain forest trees. In: P.J. den Boer and G.R. Gradwell (eds.), Dynamics of Populations. Pudoc, Wageningen. pp. 298–312.Google Scholar
  10. Couteron, P., J. Seghieri and J. Chadoeuf. 2003. A test for spatial relationships between neighbouring plants in plots of heterogeneous plant density. J. Veg. Sci. 14: 163–172.CrossRefGoogle Scholar
  11. Cressie, N.A.C. 1993. Statistics for Spatial Data. John Wiley & Sons, Inc., New York.CrossRefGoogle Scholar
  12. Croat, T.B. 1978. Flora of Barro Colorado Island. Stanford University Press, Stanford.Google Scholar
  13. Diggle, P.J. 2003. Statistical Analysis of Spatial Point Patterns. Oxford University Press, Oxford.Google Scholar
  14. Dixon, P.M. 2002. Ripley’s K Function. In: A.H. El-Shaarawi and W.W. Piegorsch (eds.), Encyclopedia of Environmetrics. Wiley, Chichester. pp. 1796–1803.Google Scholar
  15. Gilbert, G.S., R.B. Foster and S.P. Hubbell. 1994. Density and distance-to-adult effects of a canker disease of trees in a moist tropical forest. Oecol. 98: 100–108.CrossRefGoogle Scholar
  16. Gilbert, G.S., K.E. Harms, D.N. Hamill and S.P. Hubbell. 2001. Effects of seedling size, El Niño drought, seedling density, and distance to nearest conspecific adult on 6-year survival of Ocotea whitei seedlings in Panama. Oecol. 127: 509–516.CrossRefGoogle Scholar
  17. Howe, H.F., E.W. Schupp and L.C. Westley. 1985. Early consequences of seed dispersal for a neotropical tree (Virola surinamensis). Ecology 66: 781–791.CrossRefGoogle Scholar
  18. Hubbell, S.P. 1979. Tree dispersion, abundance and diversity in a tropical dry forest. Science 203: 1299–1309.CrossRefGoogle Scholar
  19. Hubbell, S.P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton & Oxford.Google Scholar
  20. Hubbell, S.P., R.B. Foster, S.T. O’Brien, K.E. Harms, R. Condit, B. Wechsler, J.S. Wright and S. Loo de Lao. 1999. Light gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283: 554–557.CrossRefGoogle Scholar
  21. Janzen, D.H. 1970. Herbivores and the number of tree species in tropical forests. Am. Nat. 104: 501–528.CrossRefGoogle Scholar
  22. John, R., J.W. Dalling, K.E. Harms, J.B. Yavitt, R.F. Stallard, M. Mirabello, S.P. Hubbell, R. Valencia, H. Navarrete, M. Vallejo and R.B. Foster. 2007. Soil nutrients influence spatial distributions of tropical tree species. Proc. Nat. Acad. Sci. 104: 864–869.CrossRefGoogle Scholar
  23. Legendre, P. and M.J. Fortin. 1989. Spatial pattern and ecological analysis. Plant Ecol. 80: 107–138.CrossRefGoogle Scholar
  24. Liu, D., M. Kelly, P. Gong and Q. Guo. 2007. Characterizing spatial-temporal tree mortality patterns associated witha new forest disease. For. Ecol. Manage. 253: 220–231.CrossRefGoogle Scholar
  25. Loosemore, N.B. and E.D. Ford. 2006. Statistical inference using the G or K point pattern spatial statistics. Ecology 87: 1925–1931.CrossRefGoogle Scholar
  26. McPhaden, M.J. 2004. Evolutionof the 2002/03 El Niño. Bull. Amer. Meteor. Soc. 85: 677–695.CrossRefGoogle Scholar
  27. Packer, A. and K. Clay. 2000. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404: 278–281.CrossRefGoogle Scholar
  28. Pélissier, R. 1998. Tree spatial patterns in three contrasting plots of a southern Indian tropical moist evergreen forest. J. Trop. Ecol. 14: 1–16.CrossRefGoogle Scholar
  29. Plotkin, J.B., M.D. Potts, N. Leslie, N. Manokaran, J. LaFrankie and P.S. Ashton. 2000. Species-area curves, spatial aggregation, and habitat specialization in tropical forests. J. Theor. Biol. 207: 81–99.CrossRefGoogle Scholar
  30. R Development Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Scholar
  31. Ripley, B.D. 1976. The second-order analysis of stationary point processes. J. App. Prob. 13: 255–266.CrossRefGoogle Scholar
  32. Rowlingson, B., P. Diggle, R. Bivand, G. Petris and S. Eglen. 2008. splancs: Spatial and space-time point pattern analysis. R package version 2.01-24.
  33. Seidler, T.G. and J.B. Plotkin. 2006. Seed dispersal and spatial pattern in tropical trees. Pub. Lib. Sci. Biol. 4: 2132–2137.Google Scholar
  34. Shimatani, K. and Y. Kubota. 2004. Spatial analysis for continuously changing point patterns along a gradient and its application to an Abies sachalinensis population. Ecol. Model. 180: 359–369.CrossRefGoogle Scholar
  35. Sterner, R.W., C.A. Ribic and G.E. Schatz. 1986. Testing for life historical changes in spatial patterns of four tropical tree species. J. Ecol. 74: 621–633.CrossRefGoogle Scholar
  36. Stoyan, D., W.S. Kendall and J. Mecke. 1987. Stochastic Geometry and its Applications. Wiley, Chichester.Google Scholar
  37. Stoyan, D. and H. Stoyan. 1994. Methods of Geometrical Statistics. Wiley, Chichester.Google Scholar
  38. Thomas, M. 1949. A generalization of Poisson’s binomial limit for use in ecology. Biometrika 36: 18–25.CrossRefGoogle Scholar
  39. Van Bael, S.A., A. Aiello, A. Valderrama, E. Medianero, M. Samaniego and S.J. Wright. 2004. General herbivore outbreak following an El Niño-related drought in a lowland Panamanian forest. J. Trop. Ecol. 20: 625–633.CrossRefGoogle Scholar
  40. Waagpeterson, R.P. 2007. An estimating function approach to inference for inhomogeneous Neyman-Scott processes. Biometrics 63:252–258.CrossRefGoogle Scholar
  41. Wiegand, T., S. Gunatilleke, N. Gunatilleke and T. Okuda. 2007. Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology 88: 3088–3102.CrossRefGoogle Scholar
  42. Wong, M., S.J. Wright, S.J. Hubbell and R.B. Foster. 1990. The spatial pattern and reproductive consequences of outbreak defoliation in Quararibea asterolepis, a tropical tree. J. Ecol. 78: 579–588.CrossRefGoogle Scholar
  43. Wright, S.J. 1983. The dispersion of eggs by a Bruchid beetle among Scheelea palm seeds and the effect of distance to the parent palm. Ecology 64: 1016–1021.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Environmental BiologyUniversity of GuelphGuelphCanada

Personalised recommendations