Community Ecology

, Volume 10, Issue 1, pp 25–34 | Cite as

Cyclic patch dynamics in a Macaronesian island forest

  • R. B. EliasEmail author
  • E. Dias


We assess if the structural and floristic diversity of Juniperus-Ilex forests from Pico Island (Azores) corresponds to a mosaic of different phases of a forest cycle, by identifying the phases of that cycle and the dynamic relations between them. Eight 100 m2 plots were placed randomly in areas with structural and floristic differences but having in common the presence of live and/or dead individuals of the dominant tree species (Juniperus brevifolia). In each plot the number of seedlings, saplings, and adults as well as canopy height and width and maximum height of live Juniperus brevifolia and Ilex azorica adults were recorded. The floristic composition was determined in a 25 m2 plot, placed inside each 100 m2 plot. Juniperus-Ilex forests show a cyclic patch dynamic triggered by the senescence and death of even-aged individuals of J. brevifolia. In this forest cycle, five phases were identified, such as gap, building, mature, initial degenerative and final degenerative. The first two phases are dominated by J. brevifolia however in the degenerative phases I. azorica is the dominant tree species. The cycle may be divided into an upgrade series (comprising the first two phases) and a downgrade series (between the mature and final degenerative phases). In these forests there was no climax micro-succession detected since changes in the dominant tree species occur in the degenerative phases. This paper brings the first evidence for the existence of a forest cycle in Macaronesian forests.


Cohort senescence Forest cycle Ilex azorica Juniperus brevifolia Shifting-mosaic steady state Spatial structure Stand-level dieback 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arévalo, J.R. and J.M. Fernández-Palacios. 1998. Tree-fall gap characteristics and regeneration in the laurel forest of Tenerife. J. Veg. Sci. 9: 297–306.CrossRefGoogle Scholar
  2. Arévalo, J.R. and J.M. Fernández-Palacios. 2000. Seed bank analysis of tree species in two stands of the Tenerife laurel forest (Canary Islands). Forest Ecol. Manage. 130: 177–185.CrossRefGoogle Scholar
  3. Arévalo, J.R. and J.M. Fernández-Palacios. 2003. Spatial patterns of trees and juveniles in a Laurel forest of Tenerife, Canary Islands. Plant Ecol. 165: 1–10.CrossRefGoogle Scholar
  4. Azevedo, E.B. 1996. Modelação do clima insular à escala local – Modelo CIELO aplicado à ilha Terceira. Ph.D. Dissertation. Azores University, Angra do Heroísmo.Google Scholar
  5. Azevedo, E.B., L.S. Pereira and B. Itier. 1999. Modelling the local climate in island environments: water balance applications. Agric. Water Manage. 40: 393–403.CrossRefGoogle Scholar
  6. Barnes, B.V., D.R. Zak, S.R. Denton and S.H. Spurr. 1998. Forest Ecology, 4th edition. John Wiley & Sons, New York.Google Scholar
  7. Bobiec, A., H. Burgt, K. Meijer, C. Zuyderduyn, J. Haga and B. Vlaanderen. 2000. Rich deciduous forests in Bialowieza as a dynamic mosaic of developmental phases: premises for nature conservation and restoration management. Forest Ecol. Manage. 130: 159–175.CrossRefGoogle Scholar
  8. Borges, P.A.V., J.M. Lobo, E.B. Azevedo, C.S. Gaspar, C. Melo and L.V. Nunes. 2006. Invasibility and species richness of island endemic arthropods: a general model of endemic vs. exotic species. J. Biogeogr. 33: 169–187.CrossRefGoogle Scholar
  9. Christensen, M. and J. Emborg. 1996. Biodiversity in natural versus managed forest in Denmark. Forest Ecol. Manage. 85: 47–51.CrossRefGoogle Scholar
  10. Dias, E. 1996. Vegetação natural dos Açores. Ecologia e sintax-onomia das florestas naturais. Ph.D. Dissertation. Azores University, Angra do Heroísmo.Google Scholar
  11. Dias, E., R.B. Elias and V. Nunes. 2004. Vegetation mapping and nature conservation: a case study in Terceira Island (Azores). Biodivers. Conserv. 13: 1519–1539.CrossRefGoogle Scholar
  12. Elias, R.B. 2007. Ecologia das florestas de Juniperus dos Açores. Ph.D. Dissertation, Azores University, Angra do Heroísmo.Google Scholar
  13. Elias, R.B. and E. Dias. 2004. Primary succession on lava domes on Terceira (Azores). J. Veg. Sci. 15: 331–338.CrossRefGoogle Scholar
  14. Elias, R. B. and E. Dias. 2009. Gap dynamics and regeneration strategies in Juniperus-Laurus forests of the Azores Islands. Plant Ecol. 200: 179–189.CrossRefGoogle Scholar
  15. Emborg, J. 1998. Understorey light conditions and regeneration with respect to the structural dynamics of a near-natural temperate deciduous forest in Denmark. Forest Ecol. Manage. 106: 83–95.CrossRefGoogle Scholar
  16. Emborg, J., M. Christensen and J. Heilmann-Clausen. 2000. The structural dynamics of Suserup Skov, a near-natural temperate deciduous forest in Denmark. Forest Ecol. Manage. 126: 173–189.CrossRefGoogle Scholar
  17. Fernández-Palacios, J.M. and J.R. Arévalo. 1998. Regeneration strategies of tree species in the laurel forest of Tenerife (The Canary Islands). Plant Ecol. 137: 21–29.CrossRefGoogle Scholar
  18. Finzi, A.C., C.D. Canham and N.V. Breemen. 1998. Canopy tree-soil interactions within temperate forests: species effects on pH and cations. Ecol. Applic. 8: 447–454.Google Scholar
  19. Fonseca, R.C.B. and R.R. Rodrigues. 2000. Análise estrutural e aspectos do mosaico sucessional de uma floresta semidecídua em Botucatu, SP. Scientia Florestalis 57: 27–43.Google Scholar
  20. Fonseca, R.C.B. and I.C.B. Fonseca. 2004. Utilização de métodos estatísticos multivariados na caracterização do mosaico sucessional em floresta semidecídual. Revista Árvore, Viçosa-MG 28: 351–359.CrossRefGoogle Scholar
  21. Forcier, L.K. 1975. Reproductive strategies and the co-occurence of climax tree species. Science 189: 808–810.CrossRefGoogle Scholar
  22. França, Z., J.V. Cruz, J.C. Nunes and V.H. Forjaz. 2003. Geologia dos Açores: uma perspectiva actual. Açoreana 10: 11–140.Google Scholar
  23. Grassi, G., G. Minotta, R. Giannini and U. Bagnaresi. 2003. The structural dynamics of managed uneven-aged conifer stands in the Italian eastern Alps. Forest Ecol. Manage. 185: 225–237.CrossRefGoogle Scholar
  24. Haggar, J.P. 1988. The structure, composition and status of the cloud forests of Pico Island in the Azores. Biol. Conserv. 46: 7–22.CrossRefGoogle Scholar
  25. Henderson, P.A. and R.M.H. Seaby. 1999. Community Analysis Package (version 1.41). Pisces Conservation, Lymington.Google Scholar
  26. Koop, H. and P. Hilgen. 1987. Forest dynamics and regeneration mosaic shifts in unexploited beech (Fagus sylvatica) stands at Fontainebleu (France). Forest Ecol. Manage. 20: 135–150.CrossRefGoogle Scholar
  27. Larcher, W. 1980. Physiological Pant Ecology, 2nd ed. Springer, New York.CrossRefGoogle Scholar
  28. Lawesson, J.E. 1988. Stand-level dieback and regeneration of forests in the Galápagos Islands. Vegetatio 77: 87–93.CrossRefGoogle Scholar
  29. Liu, Q., X. Li, Z. Ma and N. Takeuchi. 2005. Monitoring forest dynamics using satellite imagery – a case study in the natural reserve of Changbai Mountain in China. Forest Ecol. Manage. 210: 25–37.CrossRefGoogle Scholar
  30. Lusk, C.H. 1996. Stand dynamics of the shade-tolerant conifers Podocarpus nubigena and Saxegothaea conspicua in Chilean temperate rain forest. J. Veg. Sci. 7: 549–558.CrossRefGoogle Scholar
  31. Mueller-Dombois, D. 1986. Perspectives for an etiology of stand-level dieback. Annu. Rev. Ecol. Syst. 17: 221–243.CrossRefGoogle Scholar
  32. Mueller-Dombois, D. 1987. Forest dynamics in Hawaii. Trends Ecol. Evol. 2(7): 216–220.CrossRefGoogle Scholar
  33. Mueller-Dombois, D. 1999. Biodiversity and environmental gradients across the tropical Pacific Islands: a new strategy for research and conservation. Naturwissenschaften 86: 253–261.CrossRefGoogle Scholar
  34. Mueller-Dombois, D. and H. Ellenberg. 1974. Aims and Methods of Vegetation Ecology. John Wiley & Sons, London.Google Scholar
  35. Miyadokoro, T., N. Nishimura and S. Yamamoto. 2003. Population structure and spatial patterns of major trees in a subalpine old-growth coniferous forest, central Japan. Forest Ecol. Manage. 182: 259–272.CrossRefGoogle Scholar
  36. Rademacher, C., C. Neuert, V. Grundmann, C. Wissel and V. Grimm. 2004. Reconstructing spatiotemporal dynamics of central European natural beech forests: the rule-based forest model BEFORE. Forest Ecol. Manage. 194: 349–368.CrossRefGoogle Scholar
  37. Rebertus, A. J. and T.T. Veblen. 1993. Structure and tree-fall gap dynamics of old-growth Nothofagus forests in Tierra del Fuego, Argentina. J. Veg. Sci. 4: 641–654.CrossRefGoogle Scholar
  38. Rivas-Martínez, S., T. Díaz, F. Fernández-González, J. Izco, J. Loidi, M. Lousã and A. Penas. 2002. Vascular plant communities of Spain and Portugal. Addenda to the syntaxonomical checklist of 2001. Part II. Itinera Geobot. 15(2): 433–922.Google Scholar
  39. Schäfer, H. 2005. Flora of the Azores – A Field Guide, 2nd ed. Margraf Publishers. Weikersheim.Google Scholar
  40. ter Braak, C.J.F. and P. Šmilauer. 1998. CANOCO Reference manual and user’s guide to Canoco for Windows. Software for canonical community ordination (version 4.0). Microcomputer Power, New York.Google Scholar
  41. van der Maarel, E. 1988. Vegetation dynamics: patterns in time and space. Vegetatio 77: 7–19.CrossRefGoogle Scholar
  42. Veblen, T.T. 1992. Regeneration dynamics. In: D.C. Glenn-Lewin, R.K. Peet and T.T. Veblen (eds.), Plant Succession: Theory and Prediction. Chapman & Hall, London. pp. 152–187.Google Scholar
  43. Watt, A.S. 1947. Pattern and process in the plant community. J. Ecol. 35: 1–22.CrossRefGoogle Scholar
  44. Whitmore, T.C. 1989. Canopy gaps and the two major groups of forest trees. Ecology 70: 536–538.CrossRefGoogle Scholar
  45. Yamashita, A., J. Sano and S. Yamamoto. 2002. Impact of a strong typhoon on the structure and dynamics of an old-growth Beech (Fagus crenata) forest, southwestern Japan. Folia Geobot. 37: 5–16.CrossRefGoogle Scholar
  46. Zang, R, J. Tao and C. Li. 2005. Within community patch dynamics in a tropical montane rain forest of Hainan Island, South China. Acta Oecol. 28:39–48.CrossRefGoogle Scholar
  47. Zar, J. 1996. Biostatistical Analysis, 3rded. Prentice Hall, Engle-wood Cliffs.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Global Changes, Climate and Meteorology Centre, Azorean Agricultural Technologies Research Centre, Agricultural Sciences DepartmentAzores UniversityAngra do Heroísmo, AzoresPortugal

Personalised recommendations