Advertisement

Community Ecology

, Volume 10, Issue 1, pp 7–16 | Cite as

Algal species diversity of arid region lakes in Kazakhstan and Israel

  • S. S. BarinovaEmail author
  • T. M. Bragina
  • E. Nevo
Article

Abstract

In two arid/semiarid regions, we studied diversity of algae in lakes and pools with salinity ranging from 0.1‰ up to 39‰. In plankton and periphyton of 34 lakes in northern Kazakhstan, we found 252 species belonging to 113 genera of 8 algal divisions. In 24 pools with experimental salinity ranges in the Negev desert of Israel, we recorded 86 species from 47 genera of 6 algal divisions. The dominant groups of both arid regions are represented by widespread species of diatoms, green algae, and cyanobacteria in similar proportions. Alkaliphiles among the indicators of acidification and betamesosaprobionts among the indicators of saprobity prominently prevail in both regions. The indices of saprobity in lakes (1.48–2.7) and in pools (0.75–2.18) reflect a low-trophic loading. Oligohalobes-indifferents are most common in both arid regions. Cluster analysis based on data containing 420 species revealed 9 clusters, of which the highly diverse communities of low mineralized lakes and pools and the low diversity communities of highly-mineralized lakes and pools are separated at the highest dissimilarity level. CCA analysis revealed correlation of the algal species diversity preferences with salinity level in lakes in Kazakhstan and in pools of Israel, which are more impacted by arid factors. These results point to mineralization being the most important variable defining the diversity levels irrespective of the type and location of reservoirs in the arid regions.

Keywords

Algae Arid regions Canonical Correspondence Analysis Diversity Salinity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Homaidan, A.A. and I.A. Arif. 1998. Ecology and bloom-forming algae of a semi-permanent rain-fed pool at Al-Kharj, Saudi Arabia. J. Arid Environ. 38:15–25.CrossRefGoogle Scholar
  2. Barber, H.G. and J.R. Carter. 1996. An Atlas of British Diatoms. Bio-press Limited, Dorchester, U.K.Google Scholar
  3. Barinova, S.S. 1988. Polymorphism of connective structures in diatom algae. In: V.A. Krassilov (ed), Evolutionary Research. Vavilov’s Themes. Acad. Sci. USSR, Far East Branch, Vladivostok, pp. 110–122. (In Russian).Google Scholar
  4. Barinova, S.S. 1997. Morphology of connective spines in diatom algae of the genus Aulacoseira Thwaites. Paleontological J., Moscow 31(2):239–245.Google Scholar
  5. Barinova, S.S. 2000. Methodical aspects of algal biodiversity analysis. In: S.S. Barinova (ed), Algae as indicators of environmental assessment. Inst. Nat. Cons., Moscow, pp. 4–59. (In Russian).Google Scholar
  6. Barinova, S.S., O.V. Anissimova, O.N. Vinogradova and P.M. Tsarenko. 2002a. Ecological and geographical analysis of the diatom algofloras of continental Israel. In: Proceedings of. International Symposium “Morphology, ecology and biogeography of Diatom algae”. IBIW, Borok, pp. 8–9. (In Russian).Google Scholar
  7. Barinova, S.S., A.G. Karlsen and A.A. Solovieva. 2002b. Sustainable assessment of some water ecosystems of Kostsnai Oblast and west part of North-Kazakhstan Oblast on the hydrochemical and hydrobiological dates. In: T.M. Bragina, E.A. Bragin, (eds), The most important wetlands of North Kazakhstan (Kostsnai Oblast and west part of North-Kazakhstan Oblast). Russian Univ. Press., Moscow, pp. 39–43. (In Russian).Google Scholar
  8. Barinova, S.S., L.A. Medvedeva and O.V. Anissimova. 2000. Ecological and geographical data of algae-indicators. In: S.S. Bari-nova (ed), Algae as indicators of environmental assessment. Inst. Nat. Cons., Moscow, pp. 60–150. (In Russian).Google Scholar
  9. Barinova, S.S., L.A. Medvedeva and O.V. Anissimova. 2006. Diversity of algal indicators in environmental assessment. Pilies Studio, Tel Aviv, 498 pp. (In Russian).Google Scholar
  10. Barinova, S.S., P.M. Tsarenko and E. Nevo. 2004. Algae from experimental pools on the Dead Sea coast, Israel. Israel J. Plant Sci. 52(3):265–275.CrossRefGoogle Scholar
  11. Bourelly, P. 1973. Quelques algues d’eau douce récoltées lors du XVIIéme Congrés International de Limnologie eb Israël. Verh.-Int. Ver. Theor. Angew. Limnol. 18:1326–1337.Google Scholar
  12. Bragina, T.M. and E.A. Bragin (eds). 2002. The most important wetlands of North Kazakhstan (Kostanai Oblast and west part of North-Kazakhstan Oblast). Russian Univ. Press, Moscow. (In Russian).Google Scholar
  13. Dor, I.. 1987. Preservation and microscopy of blue-green algae (cy-anobacteria) on dry agar. Bot. Mar. 30:507–509.CrossRefGoogle Scholar
  14. Dor, I. 1998. A checklist of Cyanophyta (Cyanobacteria) of Israel and adjacent regions. Israel J. Plant Sci. 46:239–254.CrossRefGoogle Scholar
  15. Dor, I. and A. Danin. 1996. Cyanobacterial desert crusts in the Dead Sea Valley, Israel. Arch. Hydrobiol., Algol. Stud. 83:197–206.Google Scholar
  16. Dor, I. and A. Ehrlich. 1987. The effect of salinity and temperature gradients on the distribution of littoral microalgae in experimental solar ponds, Dead Sea area, Israel. Mar. Ecol. 8:193–205.CrossRefGoogle Scholar
  17. Dor, I. and M. Hornoff. 1985a. Salinity – temperature relations and morphotypes of a mixed population of coccoid cyanobacteria from hot, hypersaline pond in Israel. Mar. Ecol. 6:13–25.CrossRefGoogle Scholar
  18. Dor, I. and M. Hornoff. 1985b. Studies on Aphanothece halophytica Fremy from a solar pond. Bot. Mar. 28:389–398.CrossRefGoogle Scholar
  19. Dor, I. and N. Paz. 1989. Temporal and spatial distribution of mat microalgae in the experimental solar ponds, Dead Sea Area, Israel. In: Y. Cohen and E. Rosenberg (eds), Microbial mats: Physiological ecology of benthic microbial communities. Amer. Soc. Microbiol., Birmingham, pp. 114–122.Google Scholar
  20. Dor, I., N. Carl and I. Baldingar. 1991. Polymorphism and salinity tolerance as a criterion for differentiation of three new species of Chroococcidiopsis (Chroococcales). Arch. Hydrobiol., Algol. Stud. 64:411–421.Google Scholar
  21. Dor, I., N. Carl and M. Schidlowsky. 1992. Experimental hypersaline ponds as model environments for stromatolite formation 1. Microbenthos composition and biomass accumulation. In: M. Schidlowsky et al. (eds), Early Organic Evolution: Implications for Mineral and Energy Resources. Springer Verlag, Berlin; Heidelberg, pp. 483–493.CrossRefGoogle Scholar
  22. Ehrlich, A. 1995. Atlas of the Inland-water Diatom Flora of Israel. Isr. Acad. Sci. and Human, Jerusalem.Google Scholar
  23. Elazari-Volcani, B. 1940a. Studies on the microflora of the Dead Sea. Summary of Ph.D. thesis, Hebrew Univ., Jerusalem. (In Hebrew).Google Scholar
  24. Elazari-Volcani, B. 1940b. Algae in the bed of the Dead Sea. Nature 154: 976.Google Scholar
  25. Ettl, H. 1978. Xanthophyceae. 1. Süßwasserflora von Mitteleuropa, vol. 3. G. Fischer, Stuttgart, New York.Google Scholar
  26. Ettl, H. and G. Gartner. 1988. Chlorophyta II. Tetrasporales, Chlorococcales, Gloeodendrales. Süßwasserflora von Mitteleuropa, vol. 10. G. Fischer, Stuttgart, New York.Google Scholar
  27. Frémy, P. and T. Rayss. 1938. Algues des sources thermales de Kallirrhoe (Transjordanie). Palest. J. Bot. (Jerusal. Ser.) 1:27–34.Google Scholar
  28. Gollerbach, M.M., E.K. Kossinskaya and V.I. Polansky. 1953. Blue-green algae. Guide to Freshwater Algae of the USSR, vol. 2. Soviet Science Press, Moscow. (In Russian).Google Scholar
  29. Hegewald, E. 2000. New combinations in the genus Desmodesmus (Chlorophyceae, Scenedesmaceae). Algological Studies 96:1–18.Google Scholar
  30. Hustedt, F. 1938–1939. Systematische und ökologische Unter-suchungen über die Diatomeenflora von Java, Bali und Sumatra. Archiv für Hydrobiologie. Suppl. 15: 131–177.Google Scholar
  31. Hustedt, F. 1957. Die Diatomeenflora des Flußsystems der Weser im Gebiet der Hansestadt Bremen. Abhandl. Naturwiss. Ver. Bremen 34:181–440.Google Scholar
  32. Kisselev, N.A. 1954. Pyrrophyta. Flora plantarum cryptogamarum URSS, vol. 6. Nauka Press, Moscow. (In Russian).Google Scholar
  33. Kolbe, R. 1927. Zur Ökologie, Morphologie und Systematik der Brackwasserdiatomeen. Die Kieselalgen des Sperenberger Salzgebietes. Pflanzenforschung 7:1–146.Google Scholar
  34. Komárek, J. and K. Anagnostidis. 1989. Modern approach to the classification system of Cyanophytes 4 – Nostocales. Arch. Hydrobiol., Suppl. 82(3) (Algological Studies, 56):247–345.Google Scholar
  35. Komárek, J. and K. Anagnostidis. 1998. Cyanoprokaryota 1. Teil: Chroococcales. Süßwasserflora von Mitteleuropa, vol. 19/1. G. Fischer, Jena, Stuttgart, Lübeck, Ulm.Google Scholar
  36. Köppen, W. and R. Geiger. 1953. Die Klimate der Erde. (Map). Neubearbeitung 1953 von R. Geiger u. W. Pohl J. Perthes, Gotha.Google Scholar
  37. Krammer, K. 1985. Morphologische und lichtmikroskopische Merk-male in Mikrometer bereich. Ein Fergleich. Mikrokosmos 74:105–109.Google Scholar
  38. Krammer, K. 2000. Diatoms of Europe, vol. 4. A.R.G. Gantner Verlag K.G., Königstein.Google Scholar
  39. Krammer, K. and H. Lange-Bertalot. 1991a. Bacillariophyceae. Teil 1.Naviculaceae. SüßwasserfloravonMitteleuropa, vol.2/1. G. Fischer, Jena, Stuttgart, Lübeck, Ulm.Google Scholar
  40. Krammer, K. and H. Lange-Bertalot. 1991b. Bacillariophyceae. Teil 2.Bacillariaceae, Epithemiaceae, Surirellaceae. Süßwasser-flora von Mitteleuropa, vol. 2/2. G. Fischer, Jena, Stuttgart, Lübeck, Ulm.Google Scholar
  41. Krammer, K. and H. Lange-Bertalot. 1991c. Bacillariophyceae. Teil 3.Centrales, Fragilariaceae, Eunotiaceae. Süßwasserfloravon Mitteleuropa, vol. 2/3. G. Fischer, Stuttgart, Jena.Google Scholar
  42. Krammer, K. and H. Lange-Bertalot. 1991d. Bacillariophyceae. Teil 4.Achnanthaceae, KritischeErganzungenzu Navicula (Lineo-latae) und Gomphonema Gesammtliteraturverzeichnis. Teil 1–4. Süßwasserflora von Mitteleuropa, vol. 2/4. G. Fischer, Stuttgart, Jena.Google Scholar
  43. Lange-Bertalot, H. and K. Krammer. 1987. Bacillariaceae, Epithemiaceae, Surirellaceae. Neue und wenig bekannte Taxa, neue Kombinationen und Synonyme sowie Bemerkungen und Erganzungen zu den Naviculaceae. Bibl. Diatom. 15:1–289.Google Scholar
  44. Mattox, K.R. and R.D. Stewart. 1984. Classification on the green algae: a concept based on comparative cytology. In: D.E. Irvine and D.M. John (eds), Systematics of the Green Algae. Syst. Assoc. Spec. 27:29–72.Google Scholar
  45. Meffert, M.E. 1987. Planktic unsheathed filaments (Cyanophyceae) with polar and central gas-vacuoles. I. Their morphology and taxonomy. Arch. Hydrobiol./Suppl. 76:315–346.Google Scholar
  46. Meybeck, M. and R. Helmer. 1989. The quality of rivers: from pristine stage to global pollution. Palaeogeogr. Palaeocl. (Global and Planetary Change Section) 75:283–309.CrossRefGoogle Scholar
  47. Moshkova, N.A. and M.M. Gollerbach. 1986. Green Algae. Chlorophyta: Ulotrichophyceae (1), Ulotrichales. Flora plantarum cryptogamarum URSS, vol. 10. Nauka Press, Leningrad. (In Russian).Google Scholar
  48. Nevo, E. and S.P. Wasser (eds). 2000. Biodiversity of cyanoprocaryotes, algae and fungi of Israel. Cyanoprocaryotes and algae of continental Israel. A.R.G. Gantner Verlag, Ruggell /Leicht-enstein.Google Scholar
  49. Oren, A. 1988. The microbial ecology of the Dead Sea. In: K.S. Marshall (ed), Advancesin microbial ecology. Plenum Publ. Comp., New York, pp. 193–229.CrossRefGoogle Scholar
  50. Oren, A. 1992. Ecology of extremely halophilic organisms. In: R.H. Vreelland and L.I. Hohstein (eds), The Biology of Halophilic Bacteria. CRC Press, Boca Raton, pp. 25–53.Google Scholar
  51. Oren, A. 1993. The Dead Sea-alive again. Experimentia 49:518–522.CrossRefGoogle Scholar
  52. Palamar-Mordvintseva, G.M. 1982. Chlorophyta: Conjugatophyceae. Desmidiales. Flora plantarum cryptogamarum URSS, vol. 11. Nauka Press, Leningrad. (In Russian).Google Scholar
  53. Pantle, E. and H. Buck. 1955. Die biologische Uberwachung der Gewässer und die Darstellung der Ergebnisse. Gas- und Wasser-fach 96:1–604.Google Scholar
  54. Popova, T.G. 1966. Euglenophyta. Flora plantarum cryptogamarum URSS, vol. 8. Nauka Press, Moscow, Leningrad. (In Russian).Google Scholar
  55. Popovsky, J. and L.A. Pfiester. 1990. Dinophyceae (Dinoflagellida). Süßwasserflora von Mitteleuropa, vol. 6. Gustav Fisher Verlag, Stuttgart, Jena.Google Scholar
  56. Rayss, T. 1944. Matériaux pour la flore algologique de la Palestine I. Les Cyanophycées. Pal. J. Bot. 3:94–113.Google Scholar
  57. Rayss, T. 1951. Les algues des eaux continentales. Matériaux pour la flore algologique de la Palestine. Pal. J. Bot. 5:71–95.Google Scholar
  58. Rumrich, U., H. Lange-Bertallot and M. Rumrich. 2000. Diatoms of the Andes from Venezuela to Patagonia/Tierra del Fuego, Gantner Verlag, Ruggell.Google Scholar
  59. Sládeèek, V. 1973. System of water quality from the biological point of view. Ergeb. Limnol. 7:1–128.Google Scholar
  60. Sládeèek, V. 1986. Diatoms as indicators of organic pollution. Acta Hydroch. Hydrob. 14:555–566.CrossRefGoogle Scholar
  61. Starmach, K. 1985. Chrysophyceae und Haptophyceae. Süßwasser-flora von Mitteleuropa. vol. 1. G. Fischer, Stuttgart, New York.Google Scholar
  62. Subyani, A.M. 2005. Hydrochemical identification and salinity problem of ground-water in Wadi Yalamlam basin, Western Saudi Arabia. J. Arid Environ. 60:53–66.CrossRefGoogle Scholar
  63. Swift, E. 1967. Cleaning diatom frustules with ultraviolet radiation and peroxide. Phycologia 6:161–163.CrossRefGoogle Scholar
  64. Takhtajan, A. 1978. The floristic regions of the world. Nauka Press, Leningrad. (In Russian).Google Scholar
  65. The Natural Regions of Northern Kazakhstan. 1960. Academic Press, Moscow, St-Peterburg. (In Russian).Google Scholar
  66. ter Braak, C.J.F. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69:69–77.CrossRefGoogle Scholar
  67. ter Braak, C.J.F. 1990. Interpreting canonical correlation analysis through biplots of structural correlations and weights. Psy-chometrika 55:519–531.Google Scholar
  68. ter Braak, C. J. F. and Šmilauer, P. 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power (Ithaca NY, USA).Google Scholar
  69. Vinogradova, K.L., M.M. Gollerbach, L.M. Zauer and N.V. Sdobnikova. 1980. Chlorophyta, Rhodophyta, Phaeophyta. Flora plantarum cryptogamarum URSS, vol. 13. Nauka Press, Leningrad. (In Russian).Google Scholar
  70. Vinogradova, O.N., O.V. Kovalenko, S.P. Wasser and E. Nevo. 1996a. New for Israel repre sentatives of Chroococcophyceae (Cyanophyta) from the National Park Mount Carmel and Dead Sea area. Algologia 6(1):97–102. (In Russian).Google Scholar
  71. Vinogradova, O.N., O.V. Kovalenko, S.P. Wasser and E. Nevo. 1996b. Cyanophyta: checklist of continental species from Israel. Peledfus Publ. House, Haifa, Kyiv.Google Scholar
  72. Volcani, B. 1944. The microorganisms of the Dead Sea. In: Papers Collected to Commemorate the 70th Anniversary of Dr. Chaim Weizmann, Daniel Sieff Research Institute, Rehovoth, pp. 71–85.Google Scholar
  73. Watanabe T., K. Asai and A. Houki. 1986. Numerical estimation to organic pollution of flowing water by using the epilithic diatom assemblage - Diatom Assemblage Index (DAIpo). Sci Total Environ. 55:209–218.CrossRefGoogle Scholar
  74. Whitton, B.A., E. Rott and G. Friedrich. 1991. Use of Algae for Monitoring Rivers. Institut für Botanik Univ. Press, Innsbruck.Google Scholar
  75. Zohary, M. 1966. Flora Palaestina, I: Equisetaceae to Moringacea. The Israel Academy of Sciences and Humanities, Jerusalem.Google Scholar
  76. Zohary, M. and N. Feinbrun-Dothan. 1966. Flora Palaestina. The Israel Academy of Sciences and Humanities, Jerusalem.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of EvolutionUniversity of HaifaHaifaIsrael
  2. 2.Russian University of KazakhstanMoscowRussian Federation

Personalised recommendations