Community Ecology

, Volume 1, Issue 2, pp 133–138 | Cite as

Structure and diversity trends at Fagus timberline in central Italy

  • A. StanisciEmail author
  • D. Lavieri
  • A. Acosta
  • C. Blasi
Open Access


Structure and diversity trends (β-diversity and species richness) across the Fagus sylvatica timberline in the central Apennines were investigated. Twenty-three belt transects were laid out across the upper forest line in the Simbruini Mountains. Number of species, plant cover, and height of different layers were recorded in each quadrat. The moving split-window method was used to detect ecological discontinuities across beech timberlines. We show how β-diversity changes along timberlines and we put forward some hypotheses about the possible dynamics of these transitions. Four models resulted from the analysis of β-diversity trends: two β-diversity peaks indicated a transition where shrubs, mainly Juniperus communis ssp. alpina, (two high peaks) or beech scrub (two small peaks) formed a mantle that could allow forest expansion. One high β-diversity peak referred to an anthropo-zoogenic boundary maintained by disturbance, without the presence of a mantle. A little peak indicated a gradual transition at the upper potential timberline limit where beech forest had lost its typical floristical composition and structural characteristics.


β-diversity Fagus sylvatica Moving split-window method Species richness Timberline Transition zone 


  1. Anfodillo, T., S. Rento, V. Carraro, L. Fumaletto, C. Urbinati and M. Carrer. 1998. Tree water relations and climatic variations at the alpine timberline: seasonal changes of sap flux and xylem water potential in Larix decidua Miller, Picea abies L. Karst and Pinus cembra L. Annales des Sciences Forestieres 55 (1–2): 159–172.CrossRefGoogle Scholar
  2. Avena, G. C. and C. Blasi. 1980. Carta delia vegetazione del Monte Velino (Appennino abruzzese). C.N.R. Aq/1/35. Roma.Google Scholar
  3. Baig, M.N.W. and W. Tranquillini. 1980. The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in dessication damage at the alpine timberline. Oecologia 47: 252–256.CrossRefGoogle Scholar
  4. Bertolani-Marchetti, D. 1984. Dall’Appennino campano alle Serre Calabre - Cenni palinologici e paleoclimatici. Biogeographia 10: 67–87.Google Scholar
  5. Bertovic, S. and A.Z. Lovric. 1992. Übersicht der Vegetation Kroatiens nach neueren Untersuchungen. Tuexenia 12: 29–48.Google Scholar
  6. Blasi, C. 1994. Fitoclimatologia del Lazio. Fitosociologia 27: 151–175.Google Scholar
  7. Blasi, C. 1996. Un approccio fitoclimatico allo studio dei cambiamenti climatici in Italia. S. It. E. Atti 17: 39–43.Google Scholar
  8. Blasi, C., A. Stanisci, G. Abbate and M.P. Gigli. 1990. Syntaxonomy and chorology of the Vaccinium myrtillus L. communities in the Monti Reatini (central Italy). Giorn. Bot. Ital. 124 (2–3): 259–279.CrossRefGoogle Scholar
  9. Biondi, E., S. Ballelli, M. Allegrezza, F. Taffetani, A. R. Frattaroli, J. Guitian and V. Zuccarello. 1999. La vegetazione di Campo Imperatore (Gran Sasso d’Italia). Braum-Blanquetia 16: 53–116.Google Scholar
  10. Cherubini, P., P. Piussi and F.H. Schweingruber. 1996. Spatiotemporal growth dynamics and disturbances in a subalpine spruce forest in the Alps: a dendroecological reconstruction. Can. J. For. Res. 26: 991–1001.CrossRefGoogle Scholar
  11. Crawford, R.M.M. 1989. Studies in Plant Survival. Blackwell, London.Google Scholar
  12. Di Castri, F. and A.J. Hansen. 1992. The Environment and Development Crises as Determinants of Landscape Dynamics. Ecological studies - Landscape Boundaries 92: 3–19. Springer, New York.CrossRefGoogle Scholar
  13. Diaz Gonzalez, T.E. and J.A. Fernandez-Prieto. 1994. El paisaje vegetal de Asturias: Guìa de la excursion. Itinera Geobotanica 8: 5–235.Google Scholar
  14. Dierschke, H. 1974. Saumgesselschaften im Vegetations- und Standortsgefälle an Waldrändern. Scripta Geobot. 6: 1–246.Google Scholar
  15. Dowgiallo, G., G. Rossi and M. Tomaselli. 1998. Vegetation and soil diversity in the areas above timberline of the Tuscan-Emilian Apennines (Northern Italy). Écologie 29: 159–162.Google Scholar
  16. Edouard, J.L., L. Tessier and A. Thomas. 1991. Limite superieure de la foret au cours de l’Holocene dans les Alpes Francaises. Dendrochronologia 9: 125–142.Google Scholar
  17. Forman, R. and P. Moore. 1992. Theorethical Foundations for Understanding Boundaries in Landscape Mosaics. Ecological studies - Landscape Boundaries 92: 236–259. Springer-Verlag. New York.CrossRefGoogle Scholar
  18. Holtmeier, F.K. 1993. Timberlines as indicators of climatic changes: problems and research need. In: B. Frentzel (ed.), Solifluction and Climate Variation in the Holocene. Paläoklimaforschung 9: 211–222. Stuttgart, Jena, New York.Google Scholar
  19. Huppe, J. and R. Pott. 1993. Man-induced changes at the alpine timberline of the Val Fenga (Silvretta, Switzerland and their reflection in pollen diagrams (preliminary report). In: B. Frentzel B. (ed.), Solifluction and Climate Variation in the Holocene - Paläoklimaforschung 9: 211–222. Stuttgart, Jena, New York.Google Scholar
  20. Körner, C. 1998. A re-assessment of high elevation timberline positions and their explanation. Oecologia 115: 445–459.CrossRefGoogle Scholar
  21. Johnston, CA., J. Pastor and G. Pinay. 1992. Quantitative methods for studying landscape boundaries. Ecological studies - Landscape Boundaries 92: 107–128.CrossRefGoogle Scholar
  22. Luczaj, L. and B. Sadowska. 1997. Edge effect in different groups of organisms: vascular plant, bryophyte and Fungi species richness across a forest-grassland border. Folia Geobot. Phytotax. 32: 343–353.CrossRefGoogle Scholar
  23. Marchesoni, V. 1957. Storia climatico-forestale dell’Appennino Umbro-Marchigiano. Ann. Bot. (Roma) 25: 459–497.Google Scholar
  24. Matlack, G.R. 1994. Vegetation dynamics of the forest edge-trends in space and successional time. J. Ecol. 82: 113–123.CrossRefGoogle Scholar
  25. Pignatti, S. 1982. Flora d’Italia. Edagricole, Bologna.Google Scholar
  26. Rivas-Martinez S. 1995. Clasificación bioclimática de la Tierra. Folia Botanica Madritensis 16: 1–15.Google Scholar
  27. Schlüssel, A. and J.P. Theurillat. 1996. Synusial structure of heath-lands at the subalpine/alpine ecocline in Valais (Switzerland). Revue Suisse de Zoologie 103: 795–800.CrossRefGoogle Scholar
  28. Stanisci, A. 1997. Gli arbusteti altomontani dell’ Appennino centrale e meridionale. Fitosociologia 34: 1–45.Google Scholar
  29. Stanisci, A., A. Acosta, P. Fortini, D. Lavieri and C. Blasi. 1998. I contatti e le transizioni al limite superiore del bosco sui monti Simbruini-Ernici (Italia centrale). Rev. Valdôtaine. Hist. Nat., Supplément 52: 249–254.Google Scholar
  30. Webster, R. and I.F.T. Wong. 1969. A numerical procedure for testing soil boundaries interpreted from air photographs. Photogrammetria 24: 59–72.CrossRefGoogle Scholar
  31. Wierenga, P.J., J.M.H. Hendrickx, M.H. Nash, J.A. Ludwig and L.A. Daugherty. 1987. Variation of soil and vegetation with distance along a transect in the Chihuahuan Desert. J. Arid. Environ. 13: 53–63.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2000

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Plant BiologyUniversity of Rome ‘La Sapienza’RomeItaly
  2. 2.Science FacultyUniversity of MoliseIserniaItaly

Personalised recommendations