Analysis of a recovery process: Dwingelose Heide revisited

Abstract

The recovery process of a Dutch heathland after fire is investigated. The study area, 12 m × 20 m, has been surveyed yearly between 1963 and 1993. Previous work has shown that a stationary Markov chain models the observed recovery process well. However, the Markov model fails to capture an important observation, the existence of a phase structure. The process begins deterministically, but small random (non-Markov) effects accumulate through time and at some point the process suddenly becomes noisy. Here we make use of the spatial information contained in vegetation maps to examine dynamics at a fine spatial scale. We find that the phases observed at a large spatial scale separate themselves out distinctly at finer spatial scales. This spatial information allows us to investigate hypotheses about the mechanisms governing deterministic versus noisy vegetation dynamics.

Abbreviations

PCA:

principal component analysis.

References

  1. Aerts, R. and G.W Heil. 1993. Heathlands: Patterns and Processes in a Changing Environment. Kluwer Academic Publishers, The Hague.

    Book  Google Scholar 

  2. Allen, T.F.H. and T. B. Starr. 1982. Hierarchy: Perspectives for Ecological Complexity. University of Chicago Press, Chicago.

    Google Scholar 

  3. Anand, M. 1994. Pattern, process and mechanism— fundamentals of scientific inquiry applied to vegetation science. Coenoses 9: 81–92.

    Google Scholar 

  4. Anand, M. and L. Orlóci. 1997. Chaotic dynamics in a multispecies community. Ecological and Environmental Statistics 4: 337–344.

    Article  Google Scholar 

  5. Bascompte, J. and R. V. Solé. 1998. Modeling Spatiotemporal Dynamics in Ecology. Springer-Verlag, Berlin.

    Google Scholar 

  6. Clements, F.E. 1916. Plant Succession: an Analysis of the Development of Vegetation. Publ. No. 242. Carnegie Institution, Washington.

    Book  Google Scholar 

  7. Connell, J.H. and R.O. Slayter. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist 111: 1119–1144.

    Article  Google Scholar 

  8. Czárán, T. and S. Bartha. 1995. Spatiotemporal dynamic models of plant populations and communities. Trends in Ecology and Evolution 7: 38–42.

    Article  Google Scholar 

  9. de Smidt, J. T. 1977. Heathland vegetation in the Netherlands. Phytocoenologia 4: 258–316.

    Google Scholar 

  10. Deutschman, D. H., S.A. Levin, C. Devine and L. A. Buttel. 1997. Scaling from trees to forests: analysis of a complex simulation model. Science Online (www.sciencemag.org).

    Google Scholar 

  11. Gimingham, C. H. 1972. Ecology of Heathlands. Chapman and Hall, London.

    Google Scholar 

  12. Gleason, H.A. 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club 53: 7–26.

    Article  Google Scholar 

  13. Heil, G.W. and R. Bobbink. 1993. “Calluna”, a simulation model for evaluation of impacts of atmospheric nitrogen deposition on dry heathlands. Ecol. Modelling 68: 161–182

    CAS  Article  Google Scholar 

  14. Lippe, E., J.T. de Smidt and D.C. Glenn-Lewin. 1985. Markov models and succession: a test from a heathland in the Netherlands. J. Ecol. 73: 775–791.

    Article  Google Scholar 

  15. Lorenz, E.N. 1963. Deterministic nonperiodic flow. J. Ann. Sci. 20: 130–141.

    Google Scholar 

  16. Mandelbrot, B. B. 1983. The Fractal Geometry of Nature. W. H. Freeman and Company, New York.

    Book  Google Scholar 

  17. Orlóci, L., M. Anand and X. S. He. 1993. Markov chain: a realistic model for temporal coenosere? Biométrie-Praximétrie 33:7–26.

    Google Scholar 

  18. Palmer, M.W. 1988. Fractal geometry: a tool for describing spatial pattern of plant communities. Vegetatio 75: 91–102.

    Article  Google Scholar 

  19. Petraitis, P. S. and R.E. Latham. 1999. The importance of scale in testing the origins of alternative community states. Ecology 80: 429–442.

    Article  Google Scholar 

  20. Pillar, V. De P. and L. Orlóci. 1996. On randomization testing in vegetation science: multifactor comparisons of relevé groups. J. Veg Sci. 7: 585–592.

    Article  Google Scholar 

  21. Prentice, I.C., O. van Tongeren and J.T. de Smidt. 1987. Simulation of heathland vegetation dynamics. J. Ecol. 75: 203–219.

    Article  Google Scholar 

  22. Rosen, R. 1970. Dynamical System Theory in Biology. Wiley-Inter-science, New York.

    Google Scholar 

  23. Tilman, D. 1994. Competition and biodiversity in spatially structured habitats. Ecology 75:2–16.

    Article  Google Scholar 

  24. Tilman, D. and P. Kareiva. 1997. Spatial Ecology. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  25. van der Maarel, E. 1996. Pattern and process in the plant community: fifty years after A. S. Watt. J. Veg. Sci. 7: 19–28.

    Article  Google Scholar 

  26. Watt, A.S. 1947. Pattern and process in the plant community. J. Ecol. 35:1–22.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Anand.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Anand, M., Heil, G.W. Analysis of a recovery process: Dwingelose Heide revisited. COMMUNITY ECOLOGY 1, 65–72 (2000). https://doi.org/10.1556/ComEc.1.2000.1.9

Download citation

Keywords

  • Community
  • Complexity
  • Pattern
  • PCA
  • Permanent plot
  • Scale
  • Space
  • Spatial competition hypothesis
  • Transition
  • Vegetation