Advertisement

Community Ecology

, Volume 1, Issue 1, pp 25–32 | Cite as

Reconstruction of a long-term recovery process from pasture to forest

  • O. WildiEmail author
  • M. Schütz
Open Access
Article

Abstract

We used space-for-time substitution to obtain a directed successional sequence for subalpine meadow vegetation in the Swiss National Park. Since human impacts (e.g., domestic animal grazing) ceased in 1914, the successional processes documented are assumed to be autogenic in nature. The data consist of 59 permanent plots spanning almost 90 years, and include many spatial replications. An initial inspection of the individual time series revealed the existence of a variety of response patterns, which are described in the literature as representing different successional types. However, a closer inspection suggested that many of these series can be superimposed, as they are part of a much longer deterministic series. Linking the individual time series proved to be challenging. A heuristic approach produced results that differed depending on initial starting conditions. We therefore derived a deterministic algorithm to produce a unique solution. The resulting sequence largely confirmed the heuristic interpretation, suggesting a trend from early successional (post-grazing) grassland to pine invasion spanning about 400 years. This timespan is valid only for the climatic conditions near the treeline, and for plant species specific to the study site. Our results suggest that the various species temporal response models described in the literature may be artifactual, representing portions of underlying Gaussian responses. The data also indicate that species assemblages may persist for several decades with only minor fluctuations, only to change suddenly for no apparent reason.

Keywords

Minimum spanning tree Plant-animal interactions Secondary succession Space-for-time substitution Time series 

Abbreviation

SNP

Swiss National Park.

References

  1. Achermann, G., M. Schütz, B.O. Krüsi and O. Wildi. 1999. Longterm Vegetation Change in Tall-herb Communities. Nationalparkforschung Schweiz.Google Scholar
  2. Braun-Blanquet, J., S. Brunies, E. Campell, E. Frey, H. Jenny, Ch. Meylan and H. Pallmann. 1931. Vegetationsentwicklung im Schweiz. Nationalpark. Ergebnisse der Untersuchung von Dauerbeobachtungsflächen I. Dokumente zur Untersuchung des Schweiz. Nationalparks. Jahresb. Nat. Ges. Graub. 69: 3–82.Google Scholar
  3. Burrows, C.J. 1990. Processes of Vegetation Change. Unwin, London.CrossRefGoogle Scholar
  4. Cattelino P.J., I.R. Noble, R.O. Slatyer and S.R. Kessel. 1979. Predicting the multiple pathways of plant succession. Environ. Manage. 3: 41–50.CrossRefGoogle Scholar
  5. Connell J.H. and R.O. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111: 1119–1144.CrossRefGoogle Scholar
  6. Ellenberg, H. 1988. Vegetation Ecology of Central Europe. Cambridge University Press, Cambridge. 1st English edition, translated from the 4th German edition. 731 p.Google Scholar
  7. Gleason H.A. 1926. The individualistic concept of the plant association. Bull. Torrey Bot. Club 53: 7–26.CrossRefGoogle Scholar
  8. Glenn-Lewin, D.C. and E. van der Maarel. 1992. Patterns and processes of vegetation dynamics. In: D.C. Glenn-Lewin, R.K. Peet and T.T. Veblen (eds.), Plant Succession. Chapman & Hall, London. pp. 11–59.Google Scholar
  9. Gower, J. C. and G.J.S. Ross. 1969. Minimum spanning tree and singe linkage cluster analysis. Appl. Stat. 18: 54–64.CrossRefGoogle Scholar
  10. Huisman, J, H. Olff and L.F.M. Fresco. 1993. A hierarchical set of models for species response analysis. J. Veg. Sci. 4: 37–46.CrossRefGoogle Scholar
  11. Huston, M. and T. Smith. 1987. Plant succession: life history and competition. Am. Nat. 130: 168–198.CrossRefGoogle Scholar
  12. Krüsi, B. O., M. Schütz, O. Wildi and H. Grämiger. 1995. Huftiere, Vegetationsdymanik und botanische Vielfalt im Nationalpark. Ergebnisse von Langzeitbeobachtungen. Cratschla 3: 14–25.Google Scholar
  13. Krüsi, B.O., M. Schütz, C. Bigler, H. Grämiger and G. Achermann. 1998. Huftiere und Vegetation im Schweizerischen Nationalpark von 1917 bis 1997. Teil 1: Einfluss auf die botanische Vielfalt der subalpinen Weiden; Teil 2: Einfluss auf das Wald-Freilandverhältnis. In: R. Cornelius und R. Hofmann (Hrsg.), Extensive Haltung robuster Haustierrassen, Wildtiermanagement, Multi-Spezies-Projekte - Neue Wege in Naturschutz und Landschaftspflege? Inst. Zoo-Wildtierforsch., Berlin, 62–74.Google Scholar
  14. Legendre, P. and L. Legendre. 1998. Numerical Ecology. 2nd ed. Elsevier, Amsterdam.Google Scholar
  15. Matlack,G. R. 1994. Vegetation dynamics ofthe forest edge — trends in space and successional time. J. Ecol. 82: 113–123.CrossRefGoogle Scholar
  16. McCook, L. J. 1994. Understanding ecological community succession: Causal models and theories, a review. Vegetatio 110: 115–147.CrossRefGoogle Scholar
  17. Orlóci, L. 1978. Multivariate Analysis in Vegetation Research. 2nd ed. Junk, The Hague.Google Scholar
  18. Peet, R. K. 1992. Community structure and ecosystem function. In: D. C. Glenn-Lewin, R.K. Peet and T.T. Veblen (eds.), Plant Succession. Chapman & Hall. London, pp. 103–151.Google Scholar
  19. Pickett, T. A. 1989. Space-for-time substitution as an alternative to long-term studies. In: E. Likens (ed.), Long-Term Studies in Ecology: Approaches and Alternatives. Springer, New York. pp. 110–135.CrossRefGoogle Scholar
  20. Podani, J. 1989. A method for generating consensus partitions and its application to community classification. Coenoses 1: 1–10.Google Scholar
  21. Schloeth, R. F. 1972. Die Entwicklung des Schalenwildbestandes im Schweizerischen Nationalpark von 1918 - 1971. Schweiz. Zeitschr. Forstwes. 123: 565–571.Google Scholar
  22. Schütz, M., B. O. Krüsi, G. Achermann, and H. Grämiger. 1998. Zeitreihenanalyse in der Vegetationskunde: Analyse und Interpretation von Einzelflächen am Beispiel von Daten aus dem Schweizerischen Nationalpark. Bot. Helv. 108: 105–124.Google Scholar
  23. Späth, H. 1977. Cluster-Analyse-Algorithmen zur Objektklassifizierung und Datenreduktion. 2nd ed. Oldenburg, München, Wien. 217 p.Google Scholar
  24. Stüssi, B. 1970. Naturbedingte Entwicklung subalpiner Weiderasen auf Alp La Schera im Schweizer Nationalpark während der Reservatsperiode 1939–1965. Ergebnisse der wissenschaftlichen Untersuchungen im schweizerischen Nationalpark. BdXIII, 385 P.Google Scholar
  25. Van Andel, J., J. P. Bakker and A. P. Grootjans. 1993. Mechanisms of vegetation succession: a review of concepts and perspectives. Acta Bot. Neerl. 42: 413–433.CrossRefGoogle Scholar
  26. Wildi, O. and L. Orlóci. 1996. Numerical Exploration of Community Patterns. A Guide to the Use of MULVA-5. 2nd Ed., SPB Academic Publishing bv, The Hague, 171p.Google Scholar
  27. Zoller, H. 1995. Vegetationskarte des Schweizerischen Nationalparkes. Erläuterungen. Natl. Park-Forsch. Schweiz 85, 108 p.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2000

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Swiss Federal Institute for ForestSnow and Landscape ResearchBirmensdorfSwitzerland

Personalised recommendations