Cereal Research Communications

, Volume 40, Issue 4, pp 451–466 | Cite as

Molecular Breeding for Septoria Tritici Blotch Resistance in Wheat

  • H. RamanEmail author
  • A. Milgate
Invited Review


Septoria tritici blotch (STB) caused by the fungus Mycosphaerella graminicola, is one of the most important foliar diseases of wheat (T. aestivum spp., aestivum L.). Various practices such as crop rotation, application of fungicides, and deployment of genetic resistance have been utilised to control this disease and subsequently reduce yield losses. During the last 20 years, significant progress has been made in understanding host-pathogen interaction, inheritance of STB resistance, localisation of loci controlling STB resistance and identification of molecular markers associated with STB resistance in common wheat. We review the progress made on various aspects of molecular breeding for STB resistance especially on mapping and validation of qualitative and quantitative trait loci in common wheat.


Septoria tritici resistance genetics molecular markers marker-assisted selection wheat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adhikari, T.B., Anderson, J.M., Goodwin, S.B. 2003. Identification and molecular mapping of a gene in wheat conferring resistance to Mycosphaerella graminicola. Phytopathol, 93:1158–1164.CrossRefGoogle Scholar
  2. Adhikari, T.B., Wallwork, H., Goodwin, S.B. 2004a, Microsatellite markers linked to the Stb2 and Stb3 genes for resistance to Septoria tritici blotch in wheat. Crop Sci, 44:1403–1411.CrossRefGoogle Scholar
  3. Adhikari, T.B., Cavaletto, J.R., Dubcovsky, J., Gieco, J., Schlatter, A.R., Goodwin, S.B. 2004b, Molecular mapping of the Stb4 gene for resistance to Septoria tritici blotch in wheat. Phytopathol, 94:1198–1206.CrossRefGoogle Scholar
  4. Adhikari, T.B., Yang, X., Cavaletto, J.R., Hu, X., Buechley, G., Ohm, H.W., Shaner, G., Goodwin, S.B. 2004c, Molecular mapping of Stb1, a potentially durable gene for resistance to Septoria tritici blotch in wheat. Theor. Appl. Genet, 109:944–953.PubMedCrossRefGoogle Scholar
  5. Akbari, M., Wenzl, P., Caig, V., Carling, J., Xia, L., Yang, S., Uszynski, G., Mohler, V., Lehmensiek, A., Kuchel, H., Hayden, M., Howes, N., Sharp, P., Vaughan, P., Rathmell, B., Huttner, E., Kilian, A. 2006. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor. Appl. Genet, 113:1409–1420.PubMedCrossRefGoogle Scholar
  6. Anderson, J., Bucholtz, D., Sardesai, N., Santini, J., Gyulai, G., Williams, C., Goodwin, S. 2010. Potential new genes for resistance to Mycosphaerella graminicola identified in Triticum aestivum × Lophopyrum elongatum disomic substitution lines. Euphytica 172:251–262.CrossRefGoogle Scholar
  7. Anonymous 2003. Strobilurin Resistance in Septoria tritici in the UK. HGCA Topic Sheet No. 69, Home Grown Cereals Authority, London, UK.Google Scholar
  8. Arama, P.F., Parlevliet, J.E., Van Silfhout, C.H. 1999. Heading date and resistance to Septoria tritici blotch in wheat not genetically associated. Euphytica 106:63–68.CrossRefGoogle Scholar
  9. Arraiano, L.S., Brown, J.K.M. 2006. Identification of isolate-specific and partial resistance to Septoria tritici blotch in 238 European wheat cultivars and breeding lines. Plant Pathol, 55:726–738.CrossRefGoogle Scholar
  10. Arraiano, L.S., Brading, P.A., Brown, J.K.M. 2001a, A detached seedling leaf technique to study resistance to Mycosphaerella graminicola (anamorph Septoria tritici) in wheat. Plant Pathol, 50:339–346.CrossRefGoogle Scholar
  11. Arraiano, L.S., Worland, A.J., Ellerbrook, C., Brown, J.K.M. 2001b, Chromosomal location of a gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid wheat Synthetic 6x’. Theor. Appl. Genet, 103:758–764.CrossRefGoogle Scholar
  12. Arraiano, L.S., Chartrain, L., Bossolini, E., Slatter, H., Keller, B., Brown, J.K.M. 2007. A gene in European wheat cultivars for resistance to an African isolate of Mycosphaerella graminicola. Plant Pathol, 56:73–78.CrossRefGoogle Scholar
  13. Ballantyne, B.J., Thomson, F. 1995. Pathogenic variation in Australian isolates of Mycosphaerella graminicola. Aust. J. Agric. Res, 46:921–934.CrossRefGoogle Scholar
  14. Brading, P.A., Verstappen, E.C.P., Kema, G.H.J., Brown, J.K.M. 2002. A gene for gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathol, 92:439–445.CrossRefGoogle Scholar
  15. Brennan, J.P., Murray, G.M. 1998. Economic Importance of Wheat Diseases in Australia. NSW Agriculture, Wagga Wagga, Australia.Google Scholar
  16. Breseghello, F., Sorrells, M.E. 2006a, Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci, 46:1323–1330.CrossRefGoogle Scholar
  17. Breseghello, F., Sorrells, M.E. 2006b, Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Brown, J.K.M., Kema, G.H.J., Forrer, H.R., Verstappen, E.C.P., Arraiano, L.S., Brading, P.A., Foster, E.M., Fried, P.M., Jenny, E. 2001. Resistance of wheat cultivars and breeding lines to Septoria tritici blotch caused by isolates of Mycosphaerella graminicola in field trials. Plant Pathol, 50:325–338.CrossRefGoogle Scholar
  19. Brun, H., Chevre, A.M., Fitt, B.D.L., Powers, S., Besnard, A.L., Ermel, M., Huteau, V., Marquer, B., Eber, F., Renard, M., Andrivon, D. 2010. Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytologist 185:285–299.PubMedCrossRefGoogle Scholar
  20. Buckler, E.S., Holland, J.B., Bradbury, P.J., Acharya, C.B., Brown, P.J., Browne, C., Ersoz, E., Flint-Garcia, S., Garcia, A., Glaubitz, J.C., Goodman, M.M., Harjes, C., Guill, K., Kroon, D.E., Larsson, S., Lepak, N.K., Li, H., Mitchell, S.E., Pressoir, G., Peiffer, J.A., Rosas, M.O., Rocheford, T.R., Romay, M.C., Romero, S., Salvo, S., Villeda, H.S., Sofia da Silva, H., Sun, Q., Tian, F., Upadyayula, N., Ware, D., Yates, H., Yu, J., Zhang, Z., Kresovich, S., McMullen, M.D. 2009. The genetic architecture of maize flowering time. Science 325:714–718.PubMedCrossRefGoogle Scholar
  21. Buerstmayr, H., Steiner, B., Hartl, L., Griesser, M., Angerer, N., Lengauer, D., Miedaner, T., Schneider, B., Lemmens, M. 2003. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor. Appl. Genet, 107:503–508.PubMedCrossRefGoogle Scholar
  22. Chartrain, L., Brading, P.A., Widdowson, J.P., Brown, J.K.M. 2004a, Partial resistance to Septoria tritici blotch (Mycosphaeria graminicola) in wheat cultivars Arina and Riband. Phytopathol, 94:497–504.CrossRefGoogle Scholar
  23. Chartrain, L., Brading, P.A., Makepeace, J.C., Brown, J.K.M. 2004b, Sources of resistance to Septoria tritici blotch and implications for wheat breeding. Plant Pathol, 53:454–460.CrossRefGoogle Scholar
  24. Chartrain, L., Berry, S.T., Brown, J.K.M. 2005a, Resistance of wheat line Kavkaz-K4500 L.6.A.4 to Septoria tritici blotch controlled by isolate-specific resistance genes. Phytopathol, 95:664–671.CrossRefGoogle Scholar
  25. Chartrain, L., Brading, P.A., Brown, J.K.M. 2005b, Presence of the Stb6 gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in cultivars used in wheat-breeding programmes worldwide. Plant Pathol, 54:134–143.CrossRefGoogle Scholar
  26. Chartrain, L., Joaquim, P., Berry, S.T., Arraiano, L.S., Azanza, F., Brown, J.K.M. 2005c, Genetics of resistance to Septoria tritici blotch in the Portuguese wheat breeding line TE 9111. Theor. Appl. Genet, 110:1138–1144.PubMedCrossRefGoogle Scholar
  27. Chen, R.S., McDonald, B.A. 1996. Sexual reproduction plays a major role in the genetic structure of populations of the fungus Mycosphaerella graminicola. Genetics 142:1119–1127.PubMedPubMedCentralGoogle Scholar
  28. Cloutier, S., McCallum, B.D., Loutre, C., Banks, T.W., Wicker, T., Feuillet, C., Keller, B., Jordan, M.C. 2007. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol. Biol, 65:93–106.PubMedCrossRefGoogle Scholar
  29. Cohen, L., Eyal, Z. 1993. The histology of processes associated with the infection of resistant and susceptible wheat cultivars. Plant Pathol, 42:737–743.CrossRefGoogle Scholar
  30. Cowger, C., Hoffer, M.E., Mundt, C.C. 2000. Specific adaptation by Mycosphaerella graminicola to a vertically resistant wheat cultivar. Plant Pathol, 49:445–451.CrossRefGoogle Scholar
  31. Danon, T., Eyal, Z. 1990. Inheritance of resistance to two Septoria tritici isolates in spring and winter wheat cultivars. Euphytica 47:203–214.Google Scholar
  32. Dilbirligi, M., Erayman, M., Sandhu, D., Sidhu, D., Gill, K.S. 2004. Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461–481.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dublin, H.J., Rajararam, S. 1996. Breeding disease resistant wheats for tropical highlands and lowlands. Annu. Rev. Phytopathol, 49:445–451.Google Scholar
  34. Ellis, J., Jones, D. 1998. Structure and function of proteins controlling strain-specific pathogen resistance in plants. Current Opinion in Plant Biol, 1:288–293.CrossRefGoogle Scholar
  35. Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S., Mitchell, S.E. 2011. A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Erayman, M., Sandhu, D., Sidhu, D., Dilbirligi, M., Baenziger, P.S., Gill, K.S. 2004. Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Res, 32:3546–3565.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Eriksen, L., Borum, F., Jahoor, A. 2002. Septoria tritici blotch resistance in wheat: identification and localisation with DNA markers. Arbeitstagung 2001 der Vereinigung der Pflanzenzuchter und Saatgutkaufleute Österreichs gehalten vom 20 November 2001 in Gumpenstein, Irdning, Austria. Bundesanstalt für alpenlandische Landwirtschaft Gumpenstein, Irdning, Austria, pp. 95–100.Google Scholar
  38. Eriksen, L., Borum, F., Jahoor, A. 2003. Inheritance and localisation of resistance to Mycosphaerella graminicola causing Septoria tritici blotch and plant height in the wheat (Triticum aestivum L.) genome with DNA markers. Theor. Appl. Genet, 107:515–527.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Eyal, Z. (ed.) 1999. Breeding for resistance to Septoria and Stagnospora diseases of wheat. CABI Publishing, Cambridge, UK, pp. 332–344.Google Scholar
  40. Faris, J.D., Li, W.L., Liu, D.J., Chen, P.D., Gill, B.S. 1999. Candidate gene analysis of quantitative disease resistance in wheat. Theor. Appl. Genet, 98:219–225.CrossRefGoogle Scholar
  41. Feuillet, C., Travella, S., Stein, N., Albar, L., Nublat, A., Keller, B. 2003. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proceedings of the National Academy of Sciences of the United States of America 100:15253–15258.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Flint-Garcia, S.A., Thornsberry, J.M., Buckler, E.S. 2003. Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol, 54:357–374.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Flor, H.H. 1942. Inheritance of pathogenicity in Melampso ralini. Phytopathol, 32:653–669.Google Scholar
  44. Gharbi, M.S., Deghais, M., Ben, A.F. 2000. Breeding for resistance to Septoria tritici in durum wheat. Proc. of Durum Wheat Conference, Zaragoza, Spain, pp. 397–401.Google Scholar
  45. Ghavami, F., Elias, E.M., Mamidi, S., Ansari, O., Sargolzaei, M., Adhikari, T., Mergoum, M., Kianian, S.F. 2011. Mixed model association mapping for fusarium head blight resistance in Tunisian-derived durum wheat populations. G3: Genes, Genomes, Genetics 1:209–218.CrossRefGoogle Scholar
  46. Godwin, J.R., Bartlett, D.W., Heaney, S.P. 1999. Azoxystrobin: Implications of biological mode of action, pharmacokinetics and resistance management for spray programmes against Septoria diseases of wheat. In: Lucas, J.A., Bowyer, P., Anderson, H.M., (eds), Septoria on Cereals: a Study of Pathosystems. CABI Publishing, Wallingford, UK, pp. 299–315.Google Scholar
  47. Goodwin, S.B. 2007. Back to basics and beyond: increasing the level of resistance to Septoria tritici blotch in wheat. Australasian Plant Pathol, 36:532–538.CrossRefGoogle Scholar
  48. Goodwin, S.B., Cavaletto, J.R., Lowe, L., Thompson, I., Xu, S.X., Adhikari, T.B., Dubcovsky, J. 2008. Validation of a new map location for the Stb3 gene for resistance to Septoria tritici blotch in wheat. 7th Int. Symp. on Mycosphaerella and Stagnospora Diseases of Cereals. Available at:
  49. Goodwin, S.B., M’Barek, S., Dhillon, B., Wittenberg, A.J., Crane, C.F., Van Der Lee, T.J., Grimwood, J., Aerts, A., Antoniw, J., Bailey, A., Bluhm, B., Bowler, J., Bristow, J., Canto-Canche, B., Churchill, A., Conde-Ferraez, L., Cools, H., Coutinho, P.M., Csukai, M., Dehal, P., De Wit, P., Donzelli, B., Foster, A.J., Hammond-Kosack, K., Hane, J., Henrissat, B., Killian, A., Koopmann, E., Kourmpetis, Y., Kuzniar, A., Lindquist, E., Lombard, V., Maliepaard, C., Martins, N., Mahrabi, R., Oliver, R., Ponomarenko, A., Rudd, J., Salamov, A., Schmutz, J., Schouten, H.J., Shapiro, H., Stergiopoulos, I., Torriani, S.F., Tu, H., De Vries, R.P., Wiebenga, A., Zwiers, L., Grigoriev, I.V., Kema, G.J. 2011. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity and stealth pathogenesis. PLoS Genetics. Available at: Scholar
  50. Gupta, P., Balyan, H., Edwards, K., Isaac, P., Korzun, V., Röder, M., Gautier, M.F., Joudrier, P., Schlatter, A., Dubcovsky, J., De La Pena, C., Khairallah, M., Penner, G., Hayden, M., Sharp, P., Keller, B., Wang, C., Hardouin, P., Jack, P., Leroy, P. 2002. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor. Appl. Genet, 105:413–422.PubMedCrossRefGoogle Scholar
  51. Hirschhorn, J.N., Daly, M.J. 2005. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet, 6:95–108.PubMedCrossRefGoogle Scholar
  52. Huang, L., Brooks, S.A., Li, W.L., Fellers, J.P., Trick, H.N., Gill, B.S. 2003. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664.PubMedPubMedCentralGoogle Scholar
  53. Hunter, T., Coker, R.R., Royle, D.J. 1999. The telomorph stage, Mycosphaerella graminicola, in epidemics of Septoria tritici blotch on winter wheat in the UK. Plant Pathol, 48:51–57.CrossRefGoogle Scholar
  54. Johnson, R. 1984. A critical analysis of durable resistance. Annu. Rev. Phytopathol, 22:309–330.CrossRefGoogle Scholar
  55. Jordan, V.W.L., Hutcheon, J.A. 1999. Disease management in less-intensive, integrative wheat systems. In: Lucas, J.A., Bowyer, P., Anderson, H.M., (eds), Septoria on Cereals: A Study of Pathosystems. CABI Publishing, Wallingford, UK, pp. 263–272.Google Scholar
  56. Kema, G.H.J., Yu, D.Z., Rijkenberg, F.H.J., Shaw, M.W., Baayen, R.P. 1996. Histology of the pathogenesis of Mycosphaerella graminicola in wheat. Phytopathol, 86:777–786.CrossRefGoogle Scholar
  57. Kolmer, J.A., Singh, R.P., Garvin, D.F., Viccars, L., William, H.M., Huerta-Espino, Julio, Ogbonnaya, F.C., Raman, H., Orford, S., Bariana, H.S., Lagudah, E.S. 2008. Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Sci, 48:1841–1852.CrossRefGoogle Scholar
  58. Krattinger, S.G., Lagudah, E.S., Spielmeyer, W., Singh, R.P., Huerta-Espino, J., McFadden, H., Bossolini, E.S., Selter, L.L., Keller, B. 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363.CrossRefGoogle Scholar
  59. Krenz, J.E., Sackett, K.E., Mundt, C.C. 2008. Specificity of incomplete resistance to Mycosphaerella graminicola in wheat. Phytopathol, 98:555–561.CrossRefGoogle Scholar
  60. Latha, R., Rubia, L., Bennett, J., Swaminathan, M.S. 2004. Allele mining for stress tolerance genes in Oryza species and related germplasm. Mol. Biotechnol, 27:101–108.PubMedCrossRefGoogle Scholar
  61. Leister, D., Kurth, J., Laurie, D.A., Yano, M., Sasaki, T., Graner, A., Schulze-Lefert, P. 1999. RFLP- and physical mapping of resistance gene homologues in rice (O. sativa) and barley (H. vulgare). Theor. Appl. Genet, 98:509–520.CrossRefGoogle Scholar
  62. Liu, Z.H., Faris, J.D., Meinhardt, S.W., Ali, S., Rasmussen, J.B., Friesen, T.L. 2004. Genetic and physical mapping of a gene conditioning sensitivity in wheat to a partially purified host-selective toxin produced by Stagonospora nodorum. Phytopathol, 94:1056–1060.CrossRefGoogle Scholar
  63. Malysheva, L., Ganal, M.W., Röder, M.S. 2004. Evaluation of cultivated barley (Hordeum vulgare) germplasm for the presence of thermostable alleles of b-amylase. Plant Breeding 123:128–131.CrossRefGoogle Scholar
  64. Manilal, H.W., Singh, R.P., Huerta-Espino, J., Palacios, G., Rajaram, S., David, H.H. 2003. Characterization of genes for durable resistance to leaf rust and yellow rust. In: CIMMYT spring wheats Plant and Animal Genomes, XI Conference, January 11–15, Town&Country Convention Center, San Diego, CA, USA, p. 393.Google Scholar
  65. May, C.E., Lagudah, E.S. 1992. Inheritance in hexaploid wheat of Septoria tritici blotch resistance and other characteristics derived from Triticum tauschii. Australian J. of Agri. Res., 43:433–442.CrossRefGoogle Scholar
  66. McCartney, C.A., Brûlé-Babel, A.L., Lamari, L. 2002. Inheritance of race-specific resistance to Mycospaerella graminicola in wheat. Phytopathol, 92:138–144.CrossRefGoogle Scholar
  67. McCartney, C.A., Brûlé-Babel, A.L., Lamari, L., Somers, D.J. 2003. Chromosomal location of a race-specific resistance gene to Mycosphaerella graminicola in the spring wheat ST6. Theor. Appl. Genet, 107:1181–1186.PubMedCrossRefGoogle Scholar
  68. McDonald, B.A., Martinez, J.P. 1990a, DNA restriction fragment length polymorphisms among Mycosphaerella graminicola (an amorph Septoria tritici) isolates collected from a single wheat field. Phytopathol, 80:1368–1373.CrossRefGoogle Scholar
  69. McDonald, B.A., Martinez, J.P. 1990b, Restriction fragment length polymorphisms in Septoria tritici occur at a high frequency. Current Genetics 17:133–138.CrossRefGoogle Scholar
  70. McIntosh, R.A., Hart, G.E., Devos, K.M., Rogers, W.J. 2004. Catalogue of gene symbols for wheat: 2004 supplement. Annu. Wheat Newsl, 50:286–313.Google Scholar
  71. Michelmore, R.W., Meyers, B.C. 1998. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res, 8:1113–1130.PubMedCrossRefGoogle Scholar
  72. Ogbonnaya, F.C., Imtiaz, M., Bariana, H.S., McLean, M., Shankar, M.M., Hollaway, G.J., Trethowan, R., Lagudah, E.S., van Ginkel, M. 2008. Mining synthetic hexaploids for multiple disease resistance to improve bread wheat. Aust. J. Agric. Res, 59:421–431.CrossRefGoogle Scholar
  73. Orton, E.S., Deller, S., Brown, J.K.M. 2011. Mycosphaerella graminicola: from genomics to disease control. Mol. Plant Pathol, 12:413–424.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Palmer, C.L., Skinner, W. 2002. Mycosphaerella graminicola: latent infection, crop devastation and genomics. Mol. Plant Pathol, 3:63–70.PubMedCrossRefGoogle Scholar
  75. Paux, E., Sourdille, P., Salse, J., Saintenac, C., Choulet, F., Leroy, P., Korol, A., Michalak, M., Kianian, S., Spielmeyer, W., Lagudah, E., Somers, D., Kilian, A., Alaux, M., Vautrin, S., Bergès, H., Eversole, K., Appels, R., Safar, J., Simkova, H., Dolezel, J., Bernard, M., Feuillet, C. 2008. A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104.PubMedCrossRefGoogle Scholar
  76. Paveley, N.D. 1999. Integrating Septoria risk variables. In: Lucas, J.A., Bowyer, P., Anderson, H.M., (eds), Septoria on Cereals: A Study of Pathosystems. CABI Publishing, Wallingford, UK, pp. 230–250.Google Scholar
  77. Peng, J.H., Fahima, T., Roder, M.S., Li, Y.C., Dahan, A., Grama, A., Ronin, Y.I., Korol, A.B., Nevo, E. 1999. Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor. Appl. Genet, 98:862–872.CrossRefGoogle Scholar
  78. Peng, J.H., Fahima, T., Roder, M.S., Li, Y.C., Huang, Q.Y., Dahan, A., Grama, A., Nevo, E. 2000. High-density molecular map of chromosome region harbouring stripe rust resistance genes YrH52 and Yr15 derived from wild emmer wheat Triticum dicoccoides. Genetica 109:199–210.PubMedCrossRefGoogle Scholar
  79. Peusha H., Hsam, S.L.K., Zeller, F.J. 1996. Chromosomal location of powdery mildew resistance genes in common wheat (Triticum aestivum L. em. Thell.) 3: Gene Pm22 in cultivar ‘Virest’. Euphytica 91:149–152.Google Scholar
  80. Peusha, H., Enno, T., Prillinn, O. 2000. Chromosomal location of powdery mildew resistance genes and cytogenetic analysis of meiosis in common wheat cultivar. Meri. Hereditas 132:29–34.PubMedCrossRefGoogle Scholar
  81. Podlich, D., Winkler, C., Cooper, M. 2004. Mapping as you go: An effective approach for marker-assisted selection of complex traits. Crop Sci, 44:1560–1571.CrossRefGoogle Scholar
  82. Raman, H., Zhang, K., Cakir, M., Appels, R., Garvin, D.F., Maron, L.G., Kochian, L.V., Moroni, J.S., Raman, R., Imtiaz, M., Drake-Brockman, F., Waters, I., Martin, P., Sasaki, T., Yamamoto, Y., Matsumoto, H., Hebb, D.M., Delhaize, E., Ryan, P.R. 2005. Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48:781–791.PubMedCrossRefGoogle Scholar
  83. Raman, H., Ryan, P.R., Raman, R., Stodart, B.J., Zhang, K., Martin, P., Wood, R., Sasaki, T., Yamamoto, Y., Mackay, M., Hebb, D.M., Delhaize, E. 2008. Analysis of TaALMT1 traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.). Theor. Appl. Genet, 116:343–354.PubMedCrossRefGoogle Scholar
  84. Raman, H., Gustafson, P. 2010. Molecular breeding for aluminium tolerance in cereals. In: Costa de Oliveira, A., Varshney, R.K., (eds.), Root Genomics. Springer Verlag, Berlin, Heidelberg, Germany, pp. 251–288.Google Scholar
  85. Raman, H., Stodart, B., Ryan, P., Delhaize, E., Emberi, L., Raman, R., Coombes, N., Milgate, A. 2010. Genome wide association analyses of common wheat (Triticum aestivum L.) germplasm identifies multiple loci for aluminium resistance. Genome 53:957–966.PubMedCrossRefGoogle Scholar
  86. Raman, R., Allen, H., Diffey, S., Raman, H., Martin, P., McKelvie, K. 2009a, Localisation of quantitative trait loci for quality attributes in a doubled haploid population of wheat (Triticum aestivum L.). Genome 52:701–715.PubMedCrossRefGoogle Scholar
  87. Raman, R., Milgate, A., Imtiaz, M., Tan, M.K., Raman, H., Lisle, C., Coombes, N., Martin, P. 2009b, Molecular mapping and physical location of major gene conferring seedling resistance to Septoria tritici blotch in wheat. Mol. Breeding 24:153–164.CrossRefGoogle Scholar
  88. Ramezanpour, S., Bastam, S., Soltanloo, H., Kia, S., Arabi, M. 2010. Estimation of combining abilities and heterosis of Septoria tritici blotch resistance in wheat genotypes. Australian J. of Crop Sci, 4:480–484.Google Scholar
  89. Rillo, A.O., Caldwell, R.M. 1966. Inheritance of resistance to Septoria tritici in Triticum aestivum s ubsp.vulgare ‘Bulgaria 88’. Phytopathol, 56:897.Google Scholar
  90. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M., Leroy, P., Ganal, M.W. 1998. Amicrosatellite map of wheat. Genetics 149:2007–2023.PubMedPubMedCentralGoogle Scholar
  91. Rosielle, A.A. 1972. Sources of resistance in wheat to speckled leaf blotch caused by Septoria tritici. Euphytica 21:152–161.CrossRefGoogle Scholar
  92. Rosielle, A.A., Brown, A.G.P. 1979. Inheritance, heritability and breeding behaviour of three sources of resistance to Septoria tritici in wheat. Euphytica 28:385–392.CrossRefGoogle Scholar
  93. Schilly, A.P., Risser, E.E., Hartl, L., Reif, J.C., Würschum, T., Miedaner, T. 2011. Stability of adult-plant resistance to Septoria tritici blotch in 24 European winter wheat varieties across nine field environments. J. Phytopathol, 159:411–416.Google Scholar
  94. Schnieder, F., Koch, G., Jung, C., Verreet, J.A. 2001. Genotypic diversity of the wheat leaf blotch pathogen Mycosphaerella graminicola (an amorph) Septoria tritici in Germany. Eur. J. Plant Pathol, 107:285–290.CrossRefGoogle Scholar
  95. Schnurbusch, T., Paillard, S., Fossati, D., Messmer, M., Schachermayr, G., Winzeler, M., Keller, B. 2003. Detection of QTLs for Stagonospora glume blotch resistance in Swiss winter wheat. Theor. Appl. Genet, 107:1226–1234.PubMedCrossRefGoogle Scholar
  96. Schnurbusch, T., Paillard, S., Schori, A., Messmer, M., Schachermayr, G., Winzeler, M., Keller, B. 2004. Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region. Theor. Appl. Genet, 108:477–484.PubMedCrossRefGoogle Scholar
  97. Sewell, W., Caldwell, R. 1960. Use of benzimidazole and excised wheat seedlings leaves in testing resistance to Septoria tritici. Phytopathol, 50:654.Google Scholar
  98. Shaner, G., Finney, R.E. 1982. Resistance in soft red winter wheat to Mycosphaerella graminicola. Phytopathol, 72:154–158.CrossRefGoogle Scholar
  99. Shen, X., Ittu, M., Ohm, H.W. 2003. Quantitative trait loci conditioning resistance to Fusarium head blight in wheat line F201R. Crop Sci, 43:850–857.CrossRefGoogle Scholar
  100. Simon, M.R., Cordo, C.A. 1997. Inheritance of partial resistance to Septoria tritici in wheat (Triticum aestivum): limitation of pycnidia and spore production. Agronomie 17:343–347.CrossRefGoogle Scholar
  101. Simon, M.R., Ayala, F.M., Corda, C.A., Roder, M.S., Boerner, A. 2004. Molecular mapping of quantitative trait loci determining resistance to Septoria tritici blotch caused by Mycosphaerella graminicola. Euphytica ( 138:41–48CrossRefGoogle Scholar
  102. Simon, M.R., Khlestkina, E.K., Castillo, N.S., Börner, A. 2010. Mapping quantitative resistance to Septoria tritici blotch in spelt wheat. Eur. J. Plant. Pathol, 128:317–324.CrossRefGoogle Scholar
  103. Simón, M.R., Perelló, A.E., Cordo, C.A., Larrán, S., van der Putten, P., Struik, P.C. 2005. Association between Septoria tritici blotch, plant height, and heading date in wheat. Agronomy J, 97:1037–1278.CrossRefGoogle Scholar
  104. Somasco, O.A., Qualset, C.O., Gilchrist, D.G. 1996. Single gene resistance to Septoria tritici blotch in the spring wheat cultivar ‘Tadinia’. Plant Breed, 115:261–267.CrossRefGoogle Scholar
  105. Srichumpa, P., Brunner, S., Keller, B., Yahiaoui, N. 2005. Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol, 139:885–895.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Stodart, B.J., Raman, H., Coombes, N., Mackay, M. 2007. Evaluating landraces of bread wheat Triticum aestivum L. for tolerance to aluminium under low pH conditions. Genetic Resources and Crop Evolution 54:759–766.CrossRefGoogle Scholar
  107. Sun, G.L., Fahima, T., Korol, A.B., Turpeinen, T., Grama, A., Ronin, Y.I., Nevo, E. 1997. Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat Triticum dicoccoides. Theor. Appl. Genet, 95:622–628.CrossRefGoogle Scholar
  108. Tavella, C.M. 1978. Date of heading and plant height of wheat cultivars as related to Septoria leaf blotch damage. Euphytica 27:577–580.CrossRefGoogle Scholar
  109. Tommasini, L., Schnurbusch, T., Fossati, D., Mascher, F., Keller, B. 2007. Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor. Appl. Genet, 115:697–708.PubMedCrossRefGoogle Scholar
  110. Tosa, Y., Tsujimoto, H., Ogura, H. 1987. A gene involved in the resistance of wheat to wheatgrass powdery mildew fungus. Genome 29:850–852.CrossRefGoogle Scholar
  111. Trebbi, D., Maccaferri, M., de Heer, P., Sørensen, A., Giuliani, S., Salvi, S., Sanguineti, M.C., Massi, A., van der Vossen, E.A., Tuberosa, R. 2011. High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor. Appl. Genet, 123:555–569.PubMedCrossRefGoogle Scholar
  112. Tyrka, M., Chelkowski, J. 2004. Enhancing the resistance of triticale by using genes from wheat and rye. J. Appl. Genet, 45:283–295.PubMedGoogle Scholar
  113. William, H.M., Hoisington, D., Singh, R.P., Gonzalez de Leon, D. 1997. Detection of quantitative trait loci associated with leaf rust resistance in bread wheat. Genome 40:253–260.PubMedCrossRefGoogle Scholar
  114. Wilson, R.E. 1979. Resistance to Septoria tritici in two wheat cultivars, determined by independent single dominant genes. Australasian Plant Pathol, 8:16–18.CrossRefGoogle Scholar
  115. Wilson, R.E. 1985. Inheritance of resistance to Septoria tritici in wheat. In: Scharen, A.L., (ed.), Septoria of Cereals. Proc. of the second international Septoria workshop, Bozeman, Montana, USA, pp. 33–35.Google Scholar
  116. Yahiaoui, N., Brunner, S., Keller, B. 2006. Rapid generation of new powdery mildew resistance genes after wheat domestication. The Plant J, 47:85–98.PubMedCrossRefGoogle Scholar
  117. Yahiaoui, N., Srichumpa, P., Dudler, R., Keller, B. 2004. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. The Plant J, 37:528–538.PubMedCrossRefGoogle Scholar
  118. Zakari, A., McIntosh, R.A., Hovmoller, M.S., Wellings, C.R., Shariflou, M.R., Hayden, M.R., Bariana, H. 2003. Recombination of Yr15 and Yr24 in chromosome 1BS. In: Pogna, N.E., Romano, N., Pogna, E.A., Galterio, G., (eds), Proc. 10th Int. Wheat Genetics Symp., Rome, Italy. Vol. 1, pp. 417–420.Google Scholar
  119. Zhan, J., Mundt, C.C., McDonald, B.A. 1998. Measuring immigration and sexual reproduction in field populations of M. graminicola. Phytopathol, 88:1330–1337.CrossRefGoogle Scholar
  120. Zhang, X., Haley, S.D., Jin, Y. 2001. Inheritance of Septoria tritici blotch resistance in winter wheat. Crop Sci, 41:323–326.CrossRefGoogle Scholar
  121. Zwart, R., Thompson, J., Milgate, A., Bansal, U., Williamson, P., Raman, H., Bariana, H.S. 2010. QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol. Breed, 26:107–124.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Wagga Wagga Agricultural Institute WaggaEH Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University)WaggaAustralia

Personalised recommendations