Advertisement

Cereal Research Communications

, Volume 40, Issue 4, pp 573–582 | Cite as

Bioinformatics Tool for Handling Molecular Data in Wheat Breeding

  • C. KutiEmail author
  • L. Láng
  • G. Gulyás
  • I. Karsai
  • K. Mészáros
  • G. Vida
  • Z. Bedő
Breeding

Abstract

The research institute in Martonvásár is one of the largest agricultural research institutes in Hungary and in Central Europe. For many years now, the accumulated data on the extensive wheat breeding stocks has been handled and analysed using programs developed in the institute. The information system that has been elaborated and constantly improved can be used for keeping records of breeding stock, for planning field and laboratory experiments, for site-plant performance evaluation, for automated data collection, for the rapid evaluation of the results and for effective management of the pedigree, seed exchange and the institute’s cereal gene bank. The demand for the storage of molecular data and their use in breeding has increased parallel with the development of new, PCR-based markers. For this reason, informatics tools (data structure and software) suited to the design of marker-assisted selection experiments and the interpretation of the results have been developed as part of the existing Martonvásár wheat breeding information system. The aim was to link molecular data to the phenotypic information already available in the database and to make the results available to wheat breeders and geneticists. The interpretation of molecular data related to specific genotypes is of assistance in clarifying the genetic background of economically important phenotypic traits, in identifying markers linked to the useful genes or agronomic traits to be found in the genomics database, and in the selection of satisfactory parental partners for breeding. Marker assisted selection coupled with traditional breeding activities enables the breeder to make plant selections based on the presence of target genes. Conventional wheat breeding with the integrated molecular component allows breeders to more accurately and efficiently select defined sets of genes in segregating generations. The molecular data are stored in a relational database, the central element of which is the [DNASource] entity. This is used to collect and store information on gene sources arising during breeding. It is therefore linked both to the phenotypic data stored in the traditional breeding system (measurements, observations, laboratory data) and to the component parts of the new, molecular data structure ([PrimerBank], [Marker], [Allele] and [Gene]).

Keywords

agroinformatics marker-assisted selection MAS wheat breeding genomic database software 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antofie, A., Lateur, M., Oger, R., Patocchi, A., Durel, C.E., Weg, W.E.V.D. 2007: A new versatile database created for geneticists and breeders to link molecular and phenotypic data in perennial crops: The AppleBreed DataBase. Bioinformatics, 23:882–891.CrossRefGoogle Scholar
  2. Aitken, P.G. 1999. Programozás Visual Basic 6 nyelven (Visual Basic 6 Programming Blue Book). Coriolis Kiadó, Budapest, Hungary.Google Scholar
  3. Bedő, Z. 2009. Tudományos mûhelyek: az MTA Mezőgazdasági Kutatóintézete (Scientific workshops: Agricultural Research Institute of the Hungarian Academy of Sciences). Növénytermelés 58:185–190. (in Hungarian with English summary)CrossRefGoogle Scholar
  4. Bedő, Z., Láng, L., Rakszegi, M. 2007: Géntechnológia a növénynemesítés eszköztárában (Gene technology as a tool for plant breeding). Magyar Tudomány 4:418–427. (in Hungarian)Google Scholar
  5. Burt, P., Kinnucan, M. 1990: Models and modeling techniques for information-systems. Review of Information Science and Technology 25:175–208.Google Scholar
  6. Herdon, M. 2009. Informatika agrárgazdasági alkalmazásokkal (IT for use in agricultural economics). Szaktudás Kiadó Ház. Budapest, Hungary, pp. 217–252. (in Hungarian)Google Scholar
  7. Hernandez, J.M. 2003. Database Design for Mere Mortals. A Hands-On Guide to Relational Database Design. Addison-Wesley Professional, Indianapolis, USA.Google Scholar
  8. Jamsa, K., Klander, L. 1998. Tippek a Visual Basichez (1001 Visual Basic Programmer’s Tips) Kossuth Kiadó, Budapest, Hungary. (in Hungarian)Google Scholar
  9. Karsai, I., Szûcs, P., Mészáros, K., Puskás, K., Bedő, Z., Veisz, O. 2007. Barley (Hordeum vulgare L.) marker linkage map: A case study of various marker types and of mapping population structure. Cereal Res. Commun. 35:1551–1562.CrossRefGoogle Scholar
  10. Kuti, C., Láng, L., Bedő, Z. 2003. Computerised recording of mass measurement data from field experiments. Növénytermelés 52 (3–4):329–340.Google Scholar
  11. Kuti, C., Láng, L., Bedő, Z. 2008. Informatical background of field experiments. Cereal Res. Commun. 36:171–174.Google Scholar
  12. Láng, L., Kuti, C., Bedő, Z. 2001. Computerised data management system for cereal breeding. Euphytica 119:235–240.CrossRefGoogle Scholar
  13. Matthews, D.E., Carollo, V.L., Lazo, G.R., Anderson, O.D. 2003. GrainGenes, the genome database for small-grain crops. Nucleic Acids Res. 31:183–186.CrossRefGoogle Scholar
  14. Uhrin, A., Vida, G., Gál, M., Láng, L., Bedő, Z. 2006. Marker-assisted selection for leaf rust resistance gene Lr37 in the Martonvásár breeding programme. Cereal Res. Commun. 34:89–91.Google Scholar
  15. Vida, G., Gál, M., Szunics, L., Láng, L., Bedő, Z., Veisz, O. 2008. A búza rozsdagombákkal szembeni ellenállóságának javítása nemesítéssel (Breeding wheat for improved resistance to rust fungi). Növényvédelem 44:322–327. (in Hungarian with English summary)Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • C. Kuti
    • 1
    Email author
  • L. Láng
    • 1
  • G. Gulyás
    • 1
  • I. Karsai
    • 1
  • K. Mészáros
    • 1
  • G. Vida
    • 1
  • Z. Bedő
    • 1
  1. 1.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary

Personalised recommendations