Advertisement

Cereal Research Communications

, Volume 39, Issue 3, pp 445–452 | Cite as

Effect of Chromosomes of the Wheat D Genome on Traits of Hexaploid Substitution Triticale

  • W. Sodkiewicz
  • B. Apolinarska
  • T. Sodkiewicz
  • H. WiśniewskaEmail author
Breeding

Abstract

The D genome of wheat (Triticum aestivum cv. Panda) was used in this study to improve traits of hexaploid winter triticale (× Triticosecale Wittmack). Genome D expression was studied in hexaploid triticale lines with single substitutions (1D/1A, 3D/3A, 4D/4A, 5D/5A, 6D/6A, 7D/7A) and a line with 4 substitutions (1D/1A + 3D/3A + 4D/4A + 6D/6D). Chromosomes 1D and 3D have introduced to the analysed substitution lines resistance to wheat leaf rust (Puccinia triticina, synonym P. recondita f. sp. tritici) and resistance to preharvest sprouting (which is very important in hexaploid triticale), reflected in a high expression of seed dormancy, a high falling number, and low alpha-amylase activity in grain.

Keywords

chromosome substitutions D genome triticale wheat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anioł, A. 1981. Metody określania tolerancyjności zbóż na toksyczne działanie jonów glinu (The laboratory methods for testing cereal for Al-tolerance). Bull. IHAR 143:3–4.Google Scholar
  2. Apolinarska, B. 1993. Stabilization of ploidy and fertility level of tetraploid triticale obtained from four cross combinations. Genetica Polonica 34:121–131.Google Scholar
  3. Apolinarska, B. 1997a. Obtaining of primary octoploid triticale forms from wheat cultivars of high bread-making quality. Bull. IHAR 201:167–174.Google Scholar
  4. Apolinarska, B. 1997b. Incorporation of Glu-D1 loci with high-molecular-weight glutenin subunits to hexaploid triticale. Folia Universitatis Agriculturae Stetinensis 175:3–8.Google Scholar
  5. Arseniuk, E., Woś, H., Woźniak-Strzembicka, A. 2000. Aspects of triticale disease research in Poland. Vortr. Pflanzenzüchtg. 49:63–72.Google Scholar
  6. Badakhshan, H., Mohammadi, S.A., Zad, S.A., Moghaddam, M., Kamali, M.R.J., Khodarahmi, M. 2008. Quantitative traits loci in bread wheat (Triticum aestivum L.) associated with resistance to stripe rust. Biotechnol. and Biotechnol. Eq. 22:901–906.CrossRefGoogle Scholar
  7. Budzianowski, G., Woś, H. 2004. The effect of single D-genome chromosomes on aluminium tolerance of triticale. Euphytica 137:165–172.CrossRefGoogle Scholar
  8. Budzianowski, G., Maćkowiak, W., Paizert, K., Apolinarska, B. 1996. Tolerance to aluminium in spring triticale. In: Guedes-Pinto, H., Darvey, N., Carnide, V.P. (eds), Triticale: Today and Tomorrow. H. Kluwer Academic Publishers, Netherlands, pp. 467–474.CrossRefGoogle Scholar
  9. Cao, H.X., Zhang, Z.B., Sun, C.X., Shao, H.B., Song, W.Y., Hu, P. 2009. Chromosomal location of traits associated with wheat seedling water and phosphorus use efficiency under different water and phosphorus stresses. Int. J. Mol. Sci. 10:4116–4136.CrossRefGoogle Scholar
  10. Czembor, P.C., Radecka-Janusik, M., Pietrusińska, A., Czembor, H.J. 2008. Maping resistance gene to leaf rust in wheat line KS91WGRC11 using quantitative bulked segregant analysis and DArT platform. In: The 11th International Wheat Genetic Symposium, Proceedings, Sydney University Press (http://ses.library.usyd.edu.an.bitsream)
  11. Dyck, P.L. 1987. The association of a gene for leaf rust resistance with the chromosome 7D suppressor of steam rust resistance in common wheat. Genome 29:467–469.CrossRefGoogle Scholar
  12. Flintham, J., Adlam, R., Bassoi, M., Haldsworth, M., Gale, M. 2002. Mapping genes for resistance to sprouting damage in wheat. Euphytica 126:39–45.CrossRefGoogle Scholar
  13. Gruszecka, D. 2005. Genetics of triticale (× Triticosecale Wittmack). In: Górny, A. (ed.), Zarys genetyki zbóż (Introduction to cereal genetics). Institute of Plant Genetics PAS, Poznań, Poland, Vol. 2, pp. 15–121. (In Polish)Google Scholar
  14. Hagemann, M.G., Ciha, A.J. 1984. Evaluation of methods used in testing winter wheat susceptibility to preharvest sprouting. Crop Sci. 24:249–254.CrossRefGoogle Scholar
  15. Heyns, I., Groenewald, E., Marais, F., Toit, F., Tolmay, V. 2006. Chromosomal location of the Russian wheat aphid resistance gene, Dn5. Crop Sci. 46:630–636.CrossRefGoogle Scholar
  16. Kazman, E., Lelley, T. 1994. Rapid incorporation of D-genome chromosomes into A and/or B genomes of hexaploid triticale. Plant Breed. 113:89–98.CrossRefGoogle Scholar
  17. Lafferty, J., Lelley, T. 2001. Introduction of high molecular wright glutenin subunits 5+10 from the improvement of the bread-making quality of hexaploid triticale. Plant Breed. 120:33–37.CrossRefGoogle Scholar
  18. Lagos, M.B., Fernandes, M.I.M., Camargo, C.E., Federizzi, L.C., Carrvalho, F.I.F. 1991. Genetics and monosomic analysis of aluminium tolerance in wheat (Triticum aestivum L.). Rev. Brasil Genet. 14:1011–1020.Google Scholar
  19. Lukaszewski, A.J., Curtis, C.A. 1994. Transfer of the Glu-D1 gene from chromosome 1D to chromosome 1A in hexaploid triticale. Plant Breed. 112:177–182.CrossRefGoogle Scholar
  20. Lukaszewski, A.J., Apolinarska, B., Gustafson, J.P. 1987. Introduction of the D-genome chromosomes from bread wheat into hexaploid triticale with a complete rye genome. Genome 29:425–430.CrossRefGoogle Scholar
  21. Maćkowiak, W., Budzianowski, G., Łukańko, U. 1994. Characteristics of winter and spring triticale cultivars from breeding station Malyszyn and their reaction to some environmental conditions. Folia Universitatis Agriculturae Stetinensis 162:141–146.Google Scholar
  22. Mares, D., Mrva, K., Tan, M.K., Sharp, P. 2002. Dormancy in wheat-grained wheat: Progress towards identification of genes and molecular markers. Euphytica 126:47–53.CrossRefGoogle Scholar
  23. Payne, P.I. 1987. Genetics of wheat storage protein and the effect of allelic variation on bread-making quality. Ann. Res. Plant. Physiol. 38:141–153.CrossRefGoogle Scholar
  24. Payne, P.I., Lawrence, G.J. 1983. Catalogue of alleles for complex gene loci Glu-A1, Glu-B1 and Glu-D1 which code for high-molecular-weight subunits of glutein in hexaploid wheats. Cereal Res. Commun. 11:29–35Google Scholar
  25. Pojmaj, M.S., Pojmaj, R. 2006. Breeding triticale for sprouting resistance and banking quality. In: Proceedings of the 6th International Triticale Symposium, Stellenbosch, South Africa, 3–7 September 2006, p. 164.Google Scholar
  26. Rybka, K. 2003. An approach to identification of rye chromosomes affecting the pre-harvest sprouting in triticale. J. Appl. Genet. 44:491–496.PubMedGoogle Scholar
  27. Sodkiewicz, W., Sodkiewicz, T. 2003. Inhibition of α -amylase acting in hexaploid triticale lines by exogenous abscisic acid. Biologia Plantarum 46:419–422.CrossRefGoogle Scholar
  28. Tarkowski, C., Apolinarska, B. 1997. The use of chromosome substitutions and translocations in the breeding of triticale, wheat and rye. Hereditas 116:281–283.CrossRefGoogle Scholar
  29. Woś, H., Strzembicka, A. 2002. Resistance to leaf rust (Puccinia recondite f. sp. tritici) and the seedling stage among single D genome substitution lines of triticale Presto. In: Proceedings of the 5th International Triticale Symposium, June 30–July 5, 2002, Radzików, Poland, Vol. II, pp. 71–74.Google Scholar
  30. Woś, H., Metzger, R.J., Lukaszewski, A.J., Cygankiewicz, A. 2002. The effect of the D-genome chromosome substitution and of translocation of chromosome 1D on some quality and agronomic parameters of winter triticale. In: Proceedings of the 5th International Triticale Symposium, June 30–July 5, 2002, Radzików, Poland, Vol. II, pp. 59–69.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • W. Sodkiewicz
    • 1
  • B. Apolinarska
    • 1
  • T. Sodkiewicz
    • 1
  • H. Wiśniewska
    • 1
    Email author
  1. 1.Institute of Plant GeneticsPolish Academy of SciencesPoznanPoland

Personalised recommendations