Cereal Research Communications

, Volume 38, Issue 4, pp 459–470 | Cite as

Identification of QTLs and associated molecular markers of agronomic traits in wheat (Triticum aestivum L.) under two conditions of nitrogen fertilization

  • J. V. García-Suárez
  • M. S. Röder
  • J. L. Díaz de LeónEmail author


Quantitative Trait Loci (QTL) mapping was carried out in a set of 114 lines of the International Triticeae Mapping Initiative (ITMI) mapping population for null nitrogen fertilization during two agricultural cycles. We quantified phenologic parameters (days to: ear emergency time, flowering time) and components of yield (number of plants and ears, plant height, leaf area, length and weight of ear, spikelet number, number and total weight of grains and by third in the ear, weight of thousand grains and total yield). Interval mapping resulted of 138 QTLs, of which 47 were catalogued as major QTLs (LOD ≥ 3.0) and 91 as minor QTLs (LOD 2.0 > 0 2.9). The QTLs were distributed in 14 of the 21 chromosomes of wheat. The data showed that a high percentage of QTLs were in chromosomes 2D (49 or 35.5%), followed by 5A (22 or 15.9%), 1B (10 or 7.2%).


QTLs molecular markers nitrogen fertilization agronomic traits yield components Triticum aestivum


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Araki, E., Miura, H., Sawada, S. 1999. Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor. Appl. Genet. 98:977–984.CrossRefGoogle Scholar
  2. Boisson, M., Mondon, K., Torney, V., Nicot, N., Laine, A.L., Bahrman, N., Gouy, A., Daiel-Vedele, F., Hirel, B., Sourdille, P., Dardevet, M., Ravel, C., Le Gouis, J. 2005. Partial sequences of nitrogen metabolism genes in hexaploid wheat. Theor. Appl. Genet. 110:932–940.CrossRefGoogle Scholar
  3. Börner, A., Korzun, V., Worland, A.J. 1998. Comparative genetic mapping of mutant loci affecting plant height and development in cereals. Euphytica 100:245–248.CrossRefGoogle Scholar
  4. Börner, A. 2002. Gene and genome mapping in cereals. Cell. Mol. Biol. Letters 7:423–429.Google Scholar
  5. Börner, A., Schumann, E., Furste, A., Coster, H., Leithold, B., Röder, M.S., Weber, W.E. 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 105:921–936.CrossRefGoogle Scholar
  6. Bullrich, L., Appendino, M.L., Tranquilli, G., Lewis, S., Dubcovsky, J. 2002. Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor. Appl. Genet. 105:585–593.CrossRefGoogle Scholar
  7. Cadalen, T., Soundrille, P., Charmet, G., Tixier, M.H., Gay, G., Boeuf, C., Bernard, S., Leroy, P., Bernard, M. 1998. Molecular markers linked to genes affecting plant height in wheat using a double-haploid population. Theor. Appl. Genet. 96:933–940.CrossRefGoogle Scholar
  8. Campbell, W.H. 1988. Nitrate reductase and its role in nitrate assimilation in plants. Physiologic Plant 74:214–219.CrossRefGoogle Scholar
  9. Campbell, B.T., Baenziger, P.S., Gill, K.S., Eskridge, K.M., Budak, H., Erayman, M., Dweikat, I., Yen, Y. 2003. Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop. Sci. 43:1493–1505.CrossRefGoogle Scholar
  10. Crawford, N.M., Glass, A.D.M. 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 3:389–395.CrossRefGoogle Scholar
  11. Forde, B.G. 2000. Nitrate transporters in plants: Structure, function and regulation. Biochem. Biophys. Acta 1465:219–235.CrossRefGoogle Scholar
  12. Frink, C.R., Waggoner, P.E., Ausubel, J.H. 1999. Nitrogen fertilizer: Retrospect and prospect. Proc. Natl. Acad. Sci. USA 96:1175–1180.CrossRefGoogle Scholar
  13. Glass, A.D.M., Brito, D.T., Kaiser, B.N., Kronzuker, H.J., Kumar, A., Okamoto, M., Rawat, S.R., Siddiqi, M.Y., Silim, S.M., Vidmar, J.J., Zhuo, D. 2001. Nitrogen transport in plants, with an emphasis on the regulation of fluxes to match plant demand. J. Plant Nutr. Soil Sci. 164:199–207.CrossRefGoogle Scholar
  14. Hirel, B., Lea, P.J. 2001. Ammonia assimilation. In: Lea, P.J., Morot-Gaudry, J.F. (eds), Plant Nitrogen. Springer, Berlin, Heidelberg, New York. pp. 79–99.CrossRefGoogle Scholar
  15. Howitt, S.M., Udvardi, M.K. 2000. Structure, function and regulation of ammonium transporters in plants. Biochem. Biophys. Acta 1465:152–170.CrossRefGoogle Scholar
  16. Jantasuriyarat, C., Vales, M.I., Watson, C.J.W., Riera-Lizarazu, O. 2004. Identification and mapping of genetic loci affecting the free-threshing habitant spike compactness in wheat (Triticum aestivum L.). Theor. Appl. Genet. 108:261–273.CrossRefGoogle Scholar
  17. Johnson, V.A., Mattern, P.J., Schmidt, J.W. 1967. Nitrogen relations during spring growth in varieties of Triticum aestivum L. differing in grain protein content. Crop Sci. 7:664–667.CrossRefGoogle Scholar
  18. Johnson, V.A., Dreider, A.F., Grabouski, P.H. 1973. Yield and protein responses to nitrogen fertilizer of two winter wheat varieties differing in inherent protein content of their grain. Agron. J. 65:259–263.CrossRefGoogle Scholar
  19. Kato, K., Miura, H., Sawada, S. 1999. QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor. Appl. Genet. 98:472–477.CrossRefGoogle Scholar
  20. Kato, K., Miura, H., Sawada, S. 2000. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor. Appl. Genet. 101:1114–1121.CrossRefGoogle Scholar
  21. Khlestkina, E.K., Pestova, E.G., Röder, M.S., Börner, A. 2002. Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.). Theor. Appl. Genet. 104:632–637.CrossRefGoogle Scholar
  22. Lam, H.M., Coschigano, K.T., Oliveira, I.C., Melooliveira, R., Coruzzi, G.M. 1996. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:569–593.CrossRefGoogle Scholar
  23. Lander, E.S., Botstein, D. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199.PubMedPubMedCentralGoogle Scholar
  24. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, I. 1987. MAPMARKER: An interactive computer package for constructing primary genetic linkage maps of experimental and naturals populations. Genomics 1:174–181.CrossRefGoogle Scholar
  25. Law, C.N. 1966. The location of genetic factors affecting a quantitative characters in wheat. Genetics 53:487–493PubMedPubMedCentralGoogle Scholar
  26. Li, W.L., Nelson, J.C., Chu, C.Y., Shi, L.H., Huang, S.H., Liu, D.J. 2002. Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 125:357–366.CrossRefGoogle Scholar
  27. McIntosh, R.A., Hart, G.E., Devos, K.M., Gale, M.D., Rogers, W.J. 1998. Catalogue of gene symbols for wheat. In: Slinkard, A.E. (ed.), Proc 9 th Int. Wheat Genet. Symp., vol. 5, University Extension Press, University of Saskatchewan, Saskatoon, Canada. pp. 1–236.Google Scholar
  28. McIntosh, R.A., Devos, K.M., Dubcovsky, J., Rogers, W.J. 2000. Catalogue of gene symbols for wheat. 2000 Supplement Wheat Information Service 91:33–70.Google Scholar
  29. Miura, H., Nakagawa, M., Worland, A.J. 1999. Control of ear emergence time b chromosome 3A of wheat. Plant Breeding 118:85–87.CrossRefGoogle Scholar
  30. Nelson, J.C. 1997. QGENE: Software for mapmarker-based genomic analysis and breeding. Mol. Breeding 3:239–245.CrossRefGoogle Scholar
  31. Picca, A., Helguera, M., Salomón, N., Carrera, A. 2004. Molecular markers. In: Biotechnology and plant breeding. Ed. INTA. Online. pp. 61–68.Google Scholar
  32. Shah, M.M., Gill, K.S., Baenziger, P.S., Yen, Y., Kaeppler, S.M., Ariyarathne, H.M. 1999. Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop. Sci. 39:1728–1732.CrossRefGoogle Scholar
  33. Shindo, C., Noda, K., Watanabe, N., Sasakuma, T. 2002. Two-gene systems of vernalization requirement and narrow-sense earliness in einkorn wheat. Genome 45:563–569.CrossRefGoogle Scholar
  34. Socolow, R.H. 1999. Nitrogen management and the future of food: Lessons from the management of energy and carbon. Proc. Natl. Acad. Sci. USA 96:6001–6008.CrossRefGoogle Scholar
  35. UNEP. 1999. Global environment outlook 2000. United Nations Environment Programme and London Earthscan, Nairobi, Kenya.Google Scholar
  36. Varshney, R.K., Korzun, V., Börner, A. 2004. Molecular maps in cereals: Methodology and progress. In: Gupta, P.K., Varshney, R.K. (eds), Cereal Genomics. Kluwer Academic Publishers, Dordrecht, The Netherlands. pp. 35–82.Google Scholar
  37. Williams, L.E., Miller, A.J. 2001. Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:659–688.CrossRefGoogle Scholar
  38. Worland, A.J., Korzun, V., Röder, M.S., Ganal, M.W., Law, C.N. 1998. Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor. Appl. Genet. 96:1110–1120.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

Authors and Affiliations

  • J. V. García-Suárez
    • 1
  • M. S. Röder
    • 2
  • J. L. Díaz de León
    • 3
    Email author
  1. 1.Programa Regional del Noroeste para el Doctorado en BiotecnologúaUniversidad Autónoma de Sinaloa (UAS)Culiacán SinaloaMéxico
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  3. 3.Departamento de AgronomíaUniversidad Autónoma de Baja California Sur (UABCS)La Paz, B.C.S.México

Personalised recommendations