Inhibition of the photosynthesis in maize caused by manganese deficiency

Abstract

The mechanism of the fact that Mn deficiency damages the photosynthesis of plants is not yet fully understood. The main aim of the study was to determine Mn deficiency effects in photophosphorylation and key enzymes of CO2 assimilation of maize. Maize plants were cultivated in Hoagland’s solution. They were subjected to Mn deficiency and to Mn administered in the Mn-deficient Hoagland’s media. The results showed that Mn deficiency was found to cause extensive declines in plant weight and chlorophyll a content, electron transport and oxygen-evolving rate, photophosphorylation rate, activities of Mg2+-ATPase, Ca2+-ATPase, Rubisco and Rubisco activase, and mRNA expressions of Rubisco and Rubisco activase of maize, but it only slightly affected chlorophyll b and carotenoid formation. However, Mn addition decreased the inhibition of the photosynthesis in maize caused by Mn deficiency.

References

  1. Allen, J.F., Holmes, N.G. 1986. Electron transport and redox titration. In: Hipkins, M.F, Baker, N.R. (eds), Photosynthesis, Energy Transduction: A Practical Approach. IRL Press, Oxford, UK, pp. 103–141.

    Google Scholar 

  2. Allnutt, F.C., Ewy, R.G., Renganathan, M., Pan, R.S., Dilley, R.A. 1991. Nigericin and hexylamine effects on localized proton gradients in thyaloids. Biochem. Biophys. Acta 1059: 28–36.

    CAS  Google Scholar 

  3. Ames, B.N. 1966. Assay of inorganic phosphate, Pi total phosphate and phosphatases. In: Colowick, S.P., Kaplan, N.O. (eds), Methods in Enzymology. Academic Press, New York, USA, Vol. 8, p. 115.

    Google Scholar 

  4. Anderson, J.M., Boardman, N.K., David, D.J. 1964. Trace metal composition of fractions obtained by digitonin fragmentation of spinach chloroplasts. Biochem. Biophys. Res. Commun. 17: 685–689.

    CAS  Article  Google Scholar 

  5. Anderson, J.M., Pyliotis, A.N. 1969. Studies with manganese-deficient spinach chloroplasts. Biochim. Biophys. Acta 189: 280–293.

    CAS  Article  Google Scholar 

  6. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts: Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24: 1–15

    CAS  Article  Google Scholar 

  7. Botrill, D.E., Possingham, J.V., Kriedmann, P.E. 1970. The effect of nutrient deficiencies on photosynthesis and respiration in spinach. Plant Soil 32: 424–438.

    Article  Google Scholar 

  8. Buchanan, B.B., Gruissem, W., Jones, R.L. 2002. Biochemistry and Molecular Biology of Plants. Am. Soc. of Plant Physiologists. Science Press, Beijing, China, pp. 568–675.

    Google Scholar 

  9. Cheniae, G.M., Martin, I.F. 1970. Sites of function of manganese within photosystem II. Roles in O2 evolution and system II. Biochim. Biophys. Acta 197: 219–239.

    CAS  Article  Google Scholar 

  10. Crafts-Brander, S.J., van de Loo, F.J., Salvucci, M.E. 1997. The two of ribulose-1,5-bisphosphate carboxylase-oxygenase activase differ in sensitivity to elevated temperature. Plant Physiol. 114: 439–444.

    Article  Google Scholar 

  11. Chatterjee, C., Nautiyal, N., Agarwala, S.C. 1994. Influence of changes in manganese and magnesium supply on some aspects of wheat physiology. Soil Sci. Plant Nutr. 40: 191–197.

    CAS  Article  Google Scholar 

  12. Dasgupta, J., Ananyev, G.M., Dismukes, G.C. 2008. Photoassembly of the water oxidizing complex in photosystem II. Coor. Chem. Rev. 252: 347–360

    CAS  Article  Google Scholar 

  13. Eyster, C., Brown, T., Tanner, H., Hood, S. 1958. Manganese requirement with respect to growth, Hill reaction and photosynthesis. Plant Physiol. 338: 235–241.

    Article  Google Scholar 

  14. Gerretsen, F.C. 1950. Manganese in relation to photosynthesis. II. Redox potentials of illuminated crude chloroplast suspensions. Plant Soil 11: 159–193.

    Article  Google Scholar 

  15. Henriques, F.S. 2003. Gas exchange, chlorophyll a fluorescence kinetics and lipid peroxidation of pecan leaves with varying manganese concentrations. Plant Sci. 165: 239–244.

    CAS  Article  Google Scholar 

  16. Homann, P. 1967. Studies on the manganese of chloroplast suspensions. Plant Physiol. 42: 997–1007.

    CAS  Article  Google Scholar 

  17. Husted, S., Laursen, K.H., Hebbern, C.A., Schmidt, S.B., Pedas, P., Haldrup, A., Jensen, P.E. 2009. Manganese deficiency leads to genotype-specific changes in fluorescence induction kinetics and state transitions. Plant Physiol. 150: 825–833.

    CAS  Article  Google Scholar 

  18. Ke, L.D., Chen, Z. 2000. A reliability test of standard-based quantitative PCR: Exogenous vs endogenous standards. Mol. Cell Probes 14: 127–135.

    CAS  Article  Google Scholar 

  19. Kok, B., Forbush, B., McGloin, M. 1970. Cooperation of charges in photosynthetic O2 evolution. I. A linear four step mechanism. Photochem. Photobiol. 11: 457–475.

    CAS  Article  Google Scholar 

  20. Lan, Y., Mott, K. A. 1991. Determination of apparent Km values for ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase using the spectrophotometric assay of Rubisco activity. Plant Physiol. 95: 604–609.

    CAS  Article  Google Scholar 

  21. Li, S.J., Cai, J.P., Wan, G.Q., Wang, M.Q., Zhao, H.Y. 1978. Studies on structure and function of chloroplasts. II. Isolation and interchangeability of pure coupling factors. Acta Bot. Sin. 20: 103–107.

    Google Scholar 

  22. Liu, W. H., David, A. 2002. Saint validation of a quantitative method for real time PCR kinetics. Biochem. Biophys. Res. Commun. 294: 347–353.

    CAS  Article  Google Scholar 

  23. Livak, K. J., Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402–408.

    CAS  Article  Google Scholar 

  24. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275.

    CAS  PubMed  Google Scholar 

  25. McCarty, R.E., Racker, E. 1968. Partial resolution of the enzymes catalyzing photosphorylation. J. Biol. Chem. 243: 129–137.

    CAS  PubMed  Google Scholar 

  26. Meider, H. 1984. Class Experiments in Plant Physiology. George Allen and Unwin, London, UK, pp. 72–74.

    Google Scholar 

  27. Mercer, F.V., Nittim, N., Possingham, J.V. 1962. The effect of manganese deficiency on the structure of spinach chloroplasts. J. Cell Biol. 115: 379–383.

    Article  Google Scholar 

  28. Nable, R.O., Bar-Akiva, A., Loneragan, J.F. 1984. Functional manganese requirement and its use as a critical value for diagnosis of manganese deficiency in subterranean clover (Triticum subterraneum L. cv. Seaton Park). Ann. Bot. 54: 39–49.

    CAS  Article  Google Scholar 

  29. Ohki, K. 1985. Manganese deficiency and toxicity effects on photosynthesis, chlorophyll and transpiration in wheat. Crop Sci. 25: 187–191.

    CAS  Article  Google Scholar 

  30. Possingham, J.V., Spence, D. 1962. Manganese as a functional component of chloroplasts. Aust. J. Bilo. Sci. 15: 58–68.

    CAS  Article  Google Scholar 

  31. Salvucci, M.E., Ogren, W.L. 1996. The mechanism of Rubisco activase: insights from studies of the properties and structure of the enzyme. Photosynth. Res. 47: 1–11.

    CAS  Article  Google Scholar 

  32. Shi, X.B., Wei, J.M., Shen, Y.K. 2001. Effects of sequential deletions of residues from the N- or C-terminus on the function of subunit of the chloroplast ATP synthase. Biochem. 40: 10825–10831.

    CAS  Article  Google Scholar 

  33. Terry, N., Ulrich, A. 1974. Photosynthetic and respiratory CO2 exchange of sugar beet as influenced by manganese deficiency. Crop Sci. 14: 502–504.

    CAS  Article  Google Scholar 

  34. Van de Loo, F.J., Salvucci, M.E. 1996. Activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) mivolves Rubisco activase trp 16. Biochem. 35: 8143–8148.

    Article  Google Scholar 

  35. Wang, Z. 2008. Plant Physiology. Chinese Agriculture Press, Beijing, pp. 87–89, 124–187, 603–604. (in Chinese)

    Google Scholar 

  36. Weiland, T., Noble, R., Crang, R. 1975. Photosynthetic and chloroplast ultrastructural consequences of manganese deficiency in soybean. Am. J. Bot. 62: 501–508.

    Article  Google Scholar 

  37. Wilkinson, R., Ohki, K. 1988. Influence of Mn deficiency and toxicity on isoprenoid synthesis. Plant Physiol. 87: 841–846.

    CAS  Article  Google Scholar 

  38. Wu, C.T., Yan, L., Liang, X.H., Chen, H., Wang, J. A. 2004. The influence of different concentrations of Mn on the growth and development of wheat. Chin. J. Eco-Agric. 12: 86–88. (in Chinese)

    Google Scholar 

  39. Yachandra, V.K., Sauer, K., Klein, M.P. 1966. Manganese cluster in photosynthesis: Where plants oxidize water to dioxygen. Chem. Rev. 96: 2927–2950.

    Article  Google Scholar 

  40. Yang, X.E., Chen, W.R., Feng, Y. 2007. Improving human micronutrient nutrition through biofortification in the soil-plant system: China as a case study. Environ. Geochem. Health 29: 413–428.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Hong.

Additional information

Communicated by J. Johnson

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Gong, X., Liu, C., Wang, Y. et al. Inhibition of the photosynthesis in maize caused by manganese deficiency. CEREAL RESEARCH COMMUNICATIONS 38, 353–365 (2010). https://doi.org/10.1556/CRC.38.2010.3.6

Download citation

Keywords

  • Mn2+ deficiency
  • maize
  • chloroplast
  • photophosphorylation
  • Rubisco
  • Rubisco activase