Advertisement

Cereal Research Communications

, Volume 38, Issue 3, pp 353–365 | Cite as

Inhibition of the photosynthesis in maize caused by manganese deficiency

  • X. Gong
  • C. Liu
  • Y. Wang
  • X. Zhao
  • M. Zhou
  • M. Hong
  • S. Wang
  • N. Li
  • F. HongEmail author
Physiology

Abstract

The mechanism of the fact that Mn deficiency damages the photosynthesis of plants is not yet fully understood. The main aim of the study was to determine Mn deficiency effects in photophosphorylation and key enzymes of CO2 assimilation of maize. Maize plants were cultivated in Hoagland’s solution. They were subjected to Mn deficiency and to Mn administered in the Mn-deficient Hoagland’s media. The results showed that Mn deficiency was found to cause extensive declines in plant weight and chlorophyll a content, electron transport and oxygen-evolving rate, photophosphorylation rate, activities of Mg2+-ATPase, Ca2+-ATPase, Rubisco and Rubisco activase, and mRNA expressions of Rubisco and Rubisco activase of maize, but it only slightly affected chlorophyll b and carotenoid formation. However, Mn addition decreased the inhibition of the photosynthesis in maize caused by Mn deficiency.

Keywords

Mn2+ deficiency maize chloroplast photophosphorylation Rubisco Rubisco activase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J.F., Holmes, N.G. 1986. Electron transport and redox titration. In: Hipkins, M.F, Baker, N.R. (eds), Photosynthesis, Energy Transduction: A Practical Approach. IRL Press, Oxford, UK, pp. 103–141.Google Scholar
  2. Allnutt, F.C., Ewy, R.G., Renganathan, M., Pan, R.S., Dilley, R.A. 1991. Nigericin and hexylamine effects on localized proton gradients in thyaloids. Biochem. Biophys. Acta 1059: 28–36.Google Scholar
  3. Ames, B.N. 1966. Assay of inorganic phosphate, Pi total phosphate and phosphatases. In: Colowick, S.P., Kaplan, N.O. (eds), Methods in Enzymology. Academic Press, New York, USA, Vol. 8, p. 115.Google Scholar
  4. Anderson, J.M., Boardman, N.K., David, D.J. 1964. Trace metal composition of fractions obtained by digitonin fragmentation of spinach chloroplasts. Biochem. Biophys. Res. Commun. 17: 685–689.CrossRefGoogle Scholar
  5. Anderson, J.M., Pyliotis, A.N. 1969. Studies with manganese-deficient spinach chloroplasts. Biochim. Biophys. Acta 189: 280–293.CrossRefGoogle Scholar
  6. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts: Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24: 1–15CrossRefGoogle Scholar
  7. Botrill, D.E., Possingham, J.V., Kriedmann, P.E. 1970. The effect of nutrient deficiencies on photosynthesis and respiration in spinach. Plant Soil 32: 424–438.CrossRefGoogle Scholar
  8. Buchanan, B.B., Gruissem, W., Jones, R.L. 2002. Biochemistry and Molecular Biology of Plants. Am. Soc. of Plant Physiologists. Science Press, Beijing, China, pp. 568–675.Google Scholar
  9. Cheniae, G.M., Martin, I.F. 1970. Sites of function of manganese within photosystem II. Roles in O2 evolution and system II. Biochim. Biophys. Acta 197: 219–239.CrossRefGoogle Scholar
  10. Crafts-Brander, S.J., van de Loo, F.J., Salvucci, M.E. 1997. The two of ribulose-1,5-bisphosphate carboxylase-oxygenase activase differ in sensitivity to elevated temperature. Plant Physiol. 114: 439–444.CrossRefGoogle Scholar
  11. Chatterjee, C., Nautiyal, N., Agarwala, S.C. 1994. Influence of changes in manganese and magnesium supply on some aspects of wheat physiology. Soil Sci. Plant Nutr. 40: 191–197.CrossRefGoogle Scholar
  12. Dasgupta, J., Ananyev, G.M., Dismukes, G.C. 2008. Photoassembly of the water oxidizing complex in photosystem II. Coor. Chem. Rev. 252: 347–360CrossRefGoogle Scholar
  13. Eyster, C., Brown, T., Tanner, H., Hood, S. 1958. Manganese requirement with respect to growth, Hill reaction and photosynthesis. Plant Physiol. 338: 235–241.CrossRefGoogle Scholar
  14. Gerretsen, F.C. 1950. Manganese in relation to photosynthesis. II. Redox potentials of illuminated crude chloroplast suspensions. Plant Soil 11: 159–193.CrossRefGoogle Scholar
  15. Henriques, F.S. 2003. Gas exchange, chlorophyll a fluorescence kinetics and lipid peroxidation of pecan leaves with varying manganese concentrations. Plant Sci. 165: 239–244.CrossRefGoogle Scholar
  16. Homann, P. 1967. Studies on the manganese of chloroplast suspensions. Plant Physiol. 42: 997–1007.CrossRefGoogle Scholar
  17. Husted, S., Laursen, K.H., Hebbern, C.A., Schmidt, S.B., Pedas, P., Haldrup, A., Jensen, P.E. 2009. Manganese deficiency leads to genotype-specific changes in fluorescence induction kinetics and state transitions. Plant Physiol. 150: 825–833.CrossRefGoogle Scholar
  18. Ke, L.D., Chen, Z. 2000. A reliability test of standard-based quantitative PCR: Exogenous vs endogenous standards. Mol. Cell Probes 14: 127–135.CrossRefGoogle Scholar
  19. Kok, B., Forbush, B., McGloin, M. 1970. Cooperation of charges in photosynthetic O2 evolution. I. A linear four step mechanism. Photochem. Photobiol. 11: 457–475.CrossRefGoogle Scholar
  20. Lan, Y., Mott, K. A. 1991. Determination of apparent Km values for ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase using the spectrophotometric assay of Rubisco activity. Plant Physiol. 95: 604–609.CrossRefGoogle Scholar
  21. Li, S.J., Cai, J.P., Wan, G.Q., Wang, M.Q., Zhao, H.Y. 1978. Studies on structure and function of chloroplasts. II. Isolation and interchangeability of pure coupling factors. Acta Bot. Sin. 20: 103–107.Google Scholar
  22. Liu, W. H., David, A. 2002. Saint validation of a quantitative method for real time PCR kinetics. Biochem. Biophys. Res. Commun. 294: 347–353.CrossRefGoogle Scholar
  23. Livak, K. J., Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402–408.CrossRefGoogle Scholar
  24. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275.PubMedGoogle Scholar
  25. McCarty, R.E., Racker, E. 1968. Partial resolution of the enzymes catalyzing photosphorylation. J. Biol. Chem. 243: 129–137.PubMedGoogle Scholar
  26. Meider, H. 1984. Class Experiments in Plant Physiology. George Allen and Unwin, London, UK, pp. 72–74.Google Scholar
  27. Mercer, F.V., Nittim, N., Possingham, J.V. 1962. The effect of manganese deficiency on the structure of spinach chloroplasts. J. Cell Biol. 115: 379–383.CrossRefGoogle Scholar
  28. Nable, R.O., Bar-Akiva, A., Loneragan, J.F. 1984. Functional manganese requirement and its use as a critical value for diagnosis of manganese deficiency in subterranean clover (Triticum subterraneum L. cv. Seaton Park). Ann. Bot. 54: 39–49.CrossRefGoogle Scholar
  29. Ohki, K. 1985. Manganese deficiency and toxicity effects on photosynthesis, chlorophyll and transpiration in wheat. Crop Sci. 25: 187–191.CrossRefGoogle Scholar
  30. Possingham, J.V., Spence, D. 1962. Manganese as a functional component of chloroplasts. Aust. J. Bilo. Sci. 15: 58–68.CrossRefGoogle Scholar
  31. Salvucci, M.E., Ogren, W.L. 1996. The mechanism of Rubisco activase: insights from studies of the properties and structure of the enzyme. Photosynth. Res. 47: 1–11.CrossRefGoogle Scholar
  32. Shi, X.B., Wei, J.M., Shen, Y.K. 2001. Effects of sequential deletions of residues from the N- or C-terminus on the function of subunit of the chloroplast ATP synthase. Biochem. 40: 10825–10831.CrossRefGoogle Scholar
  33. Terry, N., Ulrich, A. 1974. Photosynthetic and respiratory CO2 exchange of sugar beet as influenced by manganese deficiency. Crop Sci. 14: 502–504.CrossRefGoogle Scholar
  34. Van de Loo, F.J., Salvucci, M.E. 1996. Activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) mivolves Rubisco activase trp 16. Biochem. 35: 8143–8148.CrossRefGoogle Scholar
  35. Wang, Z. 2008. Plant Physiology. Chinese Agriculture Press, Beijing, pp. 87–89, 124–187, 603–604. (in Chinese)Google Scholar
  36. Weiland, T., Noble, R., Crang, R. 1975. Photosynthetic and chloroplast ultrastructural consequences of manganese deficiency in soybean. Am. J. Bot. 62: 501–508.CrossRefGoogle Scholar
  37. Wilkinson, R., Ohki, K. 1988. Influence of Mn deficiency and toxicity on isoprenoid synthesis. Plant Physiol. 87: 841–846.CrossRefGoogle Scholar
  38. Wu, C.T., Yan, L., Liang, X.H., Chen, H., Wang, J. A. 2004. The influence of different concentrations of Mn on the growth and development of wheat. Chin. J. Eco-Agric. 12: 86–88. (in Chinese)Google Scholar
  39. Yachandra, V.K., Sauer, K., Klein, M.P. 1966. Manganese cluster in photosynthesis: Where plants oxidize water to dioxygen. Chem. Rev. 96: 2927–2950.CrossRefGoogle Scholar
  40. Yang, X.E., Chen, W.R., Feng, Y. 2007. Improving human micronutrient nutrition through biofortification in the soil-plant system: China as a case study. Environ. Geochem. Health 29: 413–428.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

Authors and Affiliations

  • X. Gong
    • 1
  • C. Liu
    • 1
  • Y. Wang
    • 1
    • 2
  • X. Zhao
    • 1
  • M. Zhou
    • 1
  • M. Hong
    • 1
  • S. Wang
    • 1
  • N. Li
    • 1
  • F. Hong
    • 1
    Email author
  1. 1.Medical College of Soochow UniversitySuzhouPeople’s Republic of China
  2. 2.Department of Mathematics and NatureLasa Normal Higher Training SchoolLasaPeople’s Republic of China

Personalised recommendations