Advertisement

Cereal Research Communications

, Volume 38, Issue 3, pp 406–418 | Cite as

Heterologous expression and dough mixing studies of a novel cysteine-rich avenin-like protein

  • P. ChenEmail author
  • R. Li
  • R. Zhou
  • G. He
  • P. R. Shewry
Open Access
Quality and Utilization

Abstract

The Avenin-like gene (EU096532) was cloned from Aegilops biuncialis (2n = 4X, UUMM) in our previously study, the encoded gluten protein contained 19 cysteine residues, much more than that in all other glutenin subunits characterized so far. In present study, the protein was expressed in E. coli in large scale and purified in high purity through His-binding affinity chromatography. The purified protein was simply added or incorporated into a base flour and conducted with a 2 g Mixograph in order to investigate the functional properties including mixing time (MT), peak dough resistance (PR) and breakdown in resistance (RBD). Both 10 mg and 15 mg Avenin-like protein could cause significant increases in MT and PR, and decrease in RBD, compared to the control, when incorporated into dough. But the latter showed larger effect on functional properties. Size exclusion high-performance liquid chromatography (SE-HPLC) analysis confirmed that Avenin-like protein was chemically incorporated into polymeric subunits by intermolecular disulphide bonds.

Keywords

Avenin-like wheat Mixograph test dough properties 

Abbreviations

DTT

dithiothreitol

GMP

glutenin macropolymer

HMW-GS

high molecular weight glutenin subunit

IPTG

isopropyl-β-D-thiogalactoside

KIO3

potassium iodate

LMP

large monomeric proteins

LPP

large polymeric proteins

LMW-GS

low molecular weight glutenin subunit

MT

mixing time

PR

peak dough resistance

PVDF

polyvinylidene difluoride

RBD

breakdown in resistance

SE-HPLC

size exclusion high-performance liquid chromatography

SMP

smaller monomeric proteins

SPP

smaller polymeric proteins

References

  1. Anderson, O.D., Hsia, C.C., Adalsteins, A.E., Lew, E.J.L., Kasarda, D.D. 2001. Identification of several new classes of low-molecular-weight wheat gliadin-related proteins and genes. Theor. Appl. Genet. 103: 307–315.CrossRefGoogle Scholar
  2. Barro, F., Barceló, P., Lazzeri, P.A., Shewry, P.R., Ballesteros, J., Martín, A. 2003. Functional properties of flours from field grown transgenic wheat lines expressing the HMW glutenin subunit 1Ax1 and 1Dx5 genes. Mol. Breeding 12: 223–229.CrossRefGoogle Scholar
  3. Barro, F., Barcelo, P., Rooke, L., Tatham, A.S., Bekes, F., Shewry, P.R., Lazzeri, P. 1997. Improvement of the processing properties of wheat by transformation with HMW subunits of glutenin. Nature Biotech. 15: 1295–1299.CrossRefGoogle Scholar
  4. Batey, I.L., Gupta, R.B., MacRitchie, F. 1991. Use of size-exclusion high-performance liquid chromatography in the study of wheat flour proteins: an improved chromatographic procedure. Cereal Chem. 68: 207–209.Google Scholar
  5. Bean, S.R., Lookhart, G.L. 2001. Factors influencing the characterization of gluten proteins by size-exclusion chromatography and multiangle laser light scattering (SEC-MALLS). Cereal Chem. 78: 608–618.CrossRefGoogle Scholar
  6. Bekes, F., Anderson, O.D., Gras, P.W., Gupta, R.B., Tam, A., Wrigley, C.W., Appels, R. 1994. The contribution to mixing properties of 1D HMW glutenin subunits expressed in a bacterial system. In: Henry, J.R., Ronalds, J.A. (eds), Improvement of Cereal Quality by Genetic Engineering. Marcel Dekker, New York, USA, pp. 97–104.CrossRefGoogle Scholar
  7. Bekes, F., Gras, P.W. 1992. Demonstration of the 2-gram mixograph as a research tool. Cereal Chem. 69: 229–230.Google Scholar
  8. Blechl, A., Lin, J., Nguyen, S., Chan, R., Anderson, O.D., Dupont, F.M. 2007. Transgenic wheats with elevated levels of Dx5 and/or Dy10 high-molecular-weight glutenin subunits yield doughs with increased mixing strength and tolerance. J. Cereal Sci. 45: 172–183.CrossRefGoogle Scholar
  9. Clarke, B., Phongkham, T., Gianibelli, M., Beasley, H., Bekes, F. 2003. The characterisation and mapping of a family of LMW-gliadin genes: Effects on dough properties and bread volume. Theor. Appl. Genet. 106: 629–635.PubMedCrossRefGoogle Scholar
  10. Chen, P., Wang, C., Li, K., Chang, J., Wang, Y., Yang, G., Shewry, P.R., He, G. 2008. Cloning, expression and characterization of novel avenin-like genes in wheat and related species. J. Cereal Sci. 48: 734–740CrossRefGoogle Scholar
  11. Don, C., Lichtendonk, W.J., Plijter, J.J., Hamer, R.J. 2003. Understanding the link between GMP and dough:from glutenin particles in flour towards developed dough. J. Cereal Sci. 38: 157–165.CrossRefGoogle Scholar
  12. Dupont, F.M., Chan, R., Lopez, R., Vensel, W.H. 2005. Sequential extraction and quantitative recovery of gliadins, glutenins and other proteins from small samples of wheat flour. J. Agr. Food Chem. 53: 1575–1584.CrossRefGoogle Scholar
  13. Ferrante, P., Cristina Gianibelli, M., Larroque, O., Volpi, C., D’Ovidio, R., Lafiandra, D., Masci, S. 2006. Effect of incorporation of an i-type low-molecular-weight glutenin subunit and a modified g-gliadin in durum and in bread wheat doughs as measured by micro-mixographic analyses. J. Cereal Sci. 44: 194–202.CrossRefGoogle Scholar
  14. Fido, R.J., Békés, F., Gras, P.W., Tatham, A.S. 1997. Effects of α-, β-, γ- and ω -gliadins on the dough mixing properties of wheat flour. J. Cereal Sci. 26: 271–277.CrossRefGoogle Scholar
  15. Fredy, A., Vimla, V., Vibha, S., Indra, K.V. 1996. Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nature Biotech. 14: 1155–1159.CrossRefGoogle Scholar
  16. Gras, P.W., Anderssen, R.S., Keentok, M., Békés, F., Appels, R. 2001. Gluten protein functionality in wheat flour processing: A review. J. Agric. Res. 52: 1311–1323.CrossRefGoogle Scholar
  17. Gras, P.W., Bekes, F. 1996. Small-scale testing: The development of instrumentation and application as a research tool. In: Wrigley, C.W. (ed.), Proc. 6th Int Gluten Workshop. Royal Australian Chemical Institute, Sydney, pp. 506–510.Google Scholar
  18. He, G.Y., Jones, H.D., D’Ovidio, R., Masci, S., Chen, M.J., West, J., Butow, B., Anderson, O.D., Lazzeri, P., Fido, R., Shewry, P.R. 2005. Expression of an extended HMW subunit in transgenic wheat and the effect on dough mixing properties. J. Cereal Sci. 42: 225–231.CrossRefGoogle Scholar
  19. Johansson, E., Nilsson, H., Mazhar, H., Skerritt, J., MacRitchie, F., Svensson, G. 2002. Seasonal effects on storage proteins and gluten strength in four Swedish wheat cultivars. J. Sci. Food and Agriculture 82: 1305–1311.CrossRefGoogle Scholar
  20. Kan, Y., Wan, Y., Beaudoin, F., Leader, D.J., Edwards, K., Poole, R., Wang, D., Mitchell, R.A.C., Shewry, P.R. 2006. Transcriptome analysis reveals differentially expressed storage protein transcripts in seeds of Aegilops and wheat. J. Cereal Sci. 44: 75–85.CrossRefGoogle Scholar
  21. Kasarda, D.D. 1989. Glutenin structure in relation to wheat quality. In: Pomeranz, Y. (ed.), Wheat is Unique, American Association of Cereal Chemistry. St Paul, pp. 277–302.Google Scholar
  22. Kasarda, D.D. 1999. Glutenin polymers: The in vitro to in vivo transition. Cereal Foods World 44: 566–571.Google Scholar
  23. Kuktaite, R., Larsson, H., Johansson, E. 2004. Variation in protein composition of wheat flour and its relationship to dough mixing behaviour. J. Cereal Sci. 40: 31–39.CrossRefGoogle Scholar
  24. Lee, Y.K., Bekes, F., Gras, P., Ciaffi, M., Morell, M.K., Appels, R. 1999. The low-molecular-weight glutenin subunit proteins of primitive wheats. IV. Functional properties of products from individual genes. Theor. Appl. Genet. 98: 149–155.CrossRefGoogle Scholar
  25. Li, W., Wan, Y., Liu, Z., Liu, K., Liu, X., Li, B., Li, Z., Zhang, X., Dong, Y., Wang, D. 2004. Molecular characterization of HMW glutenin subunit allele 1Bx14: further insights into the evolution of Glu-B1-1 alleles in wheat and related species. Theor. Appl. Genet. 109: 1093–1104.PubMedCrossRefGoogle Scholar
  26. MacRitchie, F., Gupta, R.B. 1993. Functionality-composition relationships of wheat flour as a result of variation in sulfur availability. J. Agric. Res. 44: 1767–1774.CrossRefGoogle Scholar
  27. Maforimbo, E., Skurray, G., Uthayakumaran, S., Wrigley, C. 2008. Incorporation of soy proteins into the wheat-gluten matrix during dough mixing. J. Cereal Sci. 47: 380–385.CrossRefGoogle Scholar
  28. Nieto-Taladriz, M.T., Perretant, M.R., Rousset, M. 1994. Effect of gliadins and HMW and LMW subunits of glutenin on dough properties in the F6 recombinant inbred lines from a bread wheat cross. Theor. Appl. Genet. 88: 81–88.PubMedCrossRefGoogle Scholar
  29. Payne, P.I. 1987. Genetics of wheat storage protein and the effect of allelic variation on breadmaking quality. An. Review Plant Physiol. 38: 141–153.CrossRefGoogle Scholar
  30. Primo-Martin, C., Valera, R., Martinez-Anaya, M.A. 2003. Effect of pentosanase and oxidases on the characteristics of doughs and the glutenin macropolymer (GMP). J. Agric. and Food Chem. 51: 4673–4679.CrossRefGoogle Scholar
  31. Rakszegi, M., Békés, F., Láng, L., Tamás, L., Shewry, P.R., Bedõ, Z. 2005. Technological quality of transgenic wheat expressing an increased amount of a HMW glutenin subunit. J. Cereal Sci. 42: 15–23.CrossRefGoogle Scholar
  32. Rath, C.R., Gras, P.W., Wrigley, C.W., Walker, C.E. 1990. Evaluation of dough properties from two grams of flour using the mixograph principle. Cereal Foods World 35: 572–574.Google Scholar
  33. Rooke, L., Bekes, F., Fido, R., Barro, F., Gras, P., Tatham, A.S., Barcelo, P., Lazzeri, P., Shewry, P.R. 1999. Overexpression of a gluten protein in transgenic wheat results in greatly increased dough strength. J. Cereal Sci. 30: 115–120.CrossRefGoogle Scholar
  34. Salcedo, G., Prada, J., Aragoncillo, C. 1979. LowMWgliadin-like proteins from wheat endosperm. Phytochem. 18: 725–727.CrossRefGoogle Scholar
  35. Schober, T.J., Bean, S.R., Kuhn, M. 2006. Gluten proteins from spelt (Triticum aestivum ssp. spelta) cultivars: A rheological and size-exclusion high-performance liquid chromatography study. J. Cereal Sci. 44: 161–173.CrossRefGoogle Scholar
  36. Shewry, P.R. 1995. Plant storage proteins. Biol. Rev. Camb. Philos. Soc. 70: 375–426.PubMedCrossRefGoogle Scholar
  37. Shewry, P.R., Halford, N.G. 2002. Cereal seed storage proteins: Structures, properties and role in grain utilization. J. Exp. Botany 53: 947–958.CrossRefGoogle Scholar
  38. Shewry, P.R., Tatham, A.S., Lazzeri, P. 1997. Biotechnology of wheat quality. J. Sci. Food and Agric. 73: 397–406.CrossRefGoogle Scholar
  39. Skerritt, J.H., Hac, L., Bekes, F. 1999. Depolymerization of the glutenin macropolymer during dough mixing: I. Changes in levels, molecular weight distribution, and overall composition. Cereal Chem. 76: 395–401.CrossRefGoogle Scholar
  40. Suchy, J., Lukow, O.M., Ingelin, M.E. 2000. Dough microextensibility method using a 2-g mixograph and a texture analyzer. Cereal Chem. 77: 39–43.CrossRefGoogle Scholar
  41. Tamtam, L., Shewry, P.R. 2006. Heterologous expression and protein engineering of wheat gluten proteins. J. Cereal Sci. 43: 259–274.CrossRefGoogle Scholar
  42. Veraverbeke, W.S., Verbruggen, I.M., Delcour, J.A. 2001. Effects of gliadin fractions on functional properties of wheat dough depending on molecular size and hydrophobicity. Cereal Chem. 78: 138–141.CrossRefGoogle Scholar
  43. Verbruggen, I.M., Veraverbeke, W.S., Delcour, J.A. 2001. Significance of LMW-GS and HMW-GS for dough extensibility: “Addition” versus “incorporation” protocols. J. Cereal Sci. 33: 253–260.CrossRefGoogle Scholar
  44. Weegels, P.L., Hamer, R.J., Schofield, J.D. 1997. Depolymerisation and re-polymerisation of wheat glutenin during dough processing. II. Changes in composition. J. Cereal Sci. 25: 155–163.CrossRefGoogle Scholar
  45. Wieser, H. 2007. Chemistry of gluten proteins. Food Microbiol. 24: 115–119.PubMedCrossRefGoogle Scholar
  46. Wieser, H., Bushuk, W., MacRitchie, F. 2006. The polymeric glutenins. In: Wrigley, C., Bekes, F., Bushuk, W. (eds.), Gliadin and Glutenin: The Unique Balance of Wheat Quality. St. Paul, Am. Ass. Cereal Chem., pp. 213–240.CrossRefGoogle Scholar
  47. Wieser, H., Kieffer, R. 2001. Correlations of the amount of gluten protein types to the technological properties of wheat flours determined on a micro-scale. J. Cereal Sci. 34: 19–27.CrossRefGoogle Scholar
  48. William, H.V., Charlene, K.T., Nick, C., Joshua, H.W., Buchanan, B.B., Hurkman, W.J. 2005. Developmental changes in the metabolic protein profiles of wheat endosperm. Proteomics 5: 1594–1611.CrossRefGoogle Scholar
  49. Xu, H., Wang, R., Shen, X., Zhao, Y., Sun, G., Zhao, H., Guo, A. 2006. Functional properties of a new low-molecular-weight glutenin subunit gene from a bread wheat cultivar. Theor. Appl. Genet. 113: 1295–1303.PubMedCrossRefGoogle Scholar
  50. Zhu, Y.F., Li, Y.W., Chen, Y., Li, H., Liang, H., Yue, S.J., Zhang, A.M., Zhang, X.Q., Wang, D.W., Jia, X. 2005. Generation and characterization of a high molecular weight glutenin 1Bx14-deficient mutant in common wheat. Plant Breeding 124: 421–427.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.College of AgricultureGuangxi UniversityNanningChina
  2. 2.College of Life Science and TechnologyGuangxi UniversityNanningChina
  3. 3.China-UK HUST-RRes Genetic Engineering and Genomics Joint LaboratoryHuazhong University of Science & TechnologyWuhanChina
  4. 4.Rothamsted Research HarpendenHertfordshireUK

Personalised recommendations