Development of two powdery mildew and stripe rust resistant wheat lines from (Triticum turgidum × Haynaldia villosa amphiploid) × synthetic wheat hybrids

Abstract

Among the progenies of crossing Triticum turgidum — Haynaldia villosa amphiploid with synthetic hexaploid wheat (T. carthlicum / Aegilops tauschii) Am3, two lines (SN030713 and SN05078), with good resistance to stripe rust and powdery mildew, were developed. Cytological studies demonstrated that SN030713 contained 42 chromosomes and formed 21 bivalents at meiotic metaphase I. SN05078 contained 28 chromosomes and formed 14 bivalents. Genomic in situ hybridization analysis using H. villosa V genomic DNA as the probe showed SN030713 and SN05078 had no large H. villosa chromosome fragments. PCR analysis with H. villosa specific primer pHv29 showed that H. villosa genetic materials were introgressed in these two lines. SSR analysis indicated that the genomic composition of SN030713 was 2n = 6x = 42 (AABBDD), and SN05078 was 2n = 4x = 28 (AABB). Introgressed Ae. tauschii genetic materials in SN05078 were also detected.

References

  1. Bao, Y.G., Li, X.F., Liu, S.B., Cui, F., Wang, H.G. 2009. Molecular cytogenetic characterization of a new wheat-thinopyrum intermedium partial amphiploid resistant to powdery mildew and stripe rust. Cytogenet. Genome Res. 126: 390–395.

    CAS  PubMed  Google Scholar 

  2. Blanco, A., Simeone, R., Resta, P. 1987. The addition of Dasypyrum villosum (L.) Candargy chromosomes to durum wheat (Triticum durum Desf.). Theor. Appl. Genet. 74: 328–333.

    CAS  PubMed  Google Scholar 

  3. Bryan, G.J., Collins, A.J., Stephenson, P., Orry, A., Smith, J.B., Gale, M.D. 1997. Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor. Appl. Genet. 94: 557–563.

    CAS  Google Scholar 

  4. Cao, A.Z., Chen, Q.Z., Wang, H.Y., Wang, X.E., Chen, P.D. 2007. Development of a PCR molecular marker to identify Haynaldia villosa based on its specific retrotransposon sequence. Acta Bot. Boreal.-Occident. Sin. 6: 1078–1084.

    Google Scholar 

  5. Chen, H.M., Li, L.Z., Wei, X.Y., Li, S.S., Lei, T.D., Hu, H.Z., Wang, H.G., Zhang, X.S. 2005. Development of chromosome location and genetic mapping of EST-SSR markers in wheat. Chinese Sci. Bull. 50: 2328–2336.

    CAS  Google Scholar 

  6. Chen, P.D., Liu, D.J. 1982. Cytogenetical studies of hybrid progenies between Triticum aestivum and Haynaldia villosa. J. Nanjing Agri. Coll. 4: 1–16.

    CAS  Google Scholar 

  7. Chen, P.D., Qi, L.L., Zhou, B., Zhang, S.Z., Liu, D.J. 1995. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor. Appl. Genet. 91: 1125–1128.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, P.D., Zhang, S.Z., Wang, X.E., Wang, S.L., Zhou, B., Feng, Y.G., Liu, D.J. 2002. New wheat variety Nannong 9918 with high yield and powdery mildew resistance. J. Nanjing Agric. Univ. 25: 105–106.

    Google Scholar 

  9. Chen, Q., Conner, R.L., Laroche, A. 1996. Molecular characterization of Haynaldia villosa chromatin in wheat lines carrying resistance to wheat curl mite colonization. Theor. Appl. Genet. 93: 679–684.

    CAS  PubMed  Google Scholar 

  10. Chen, S.A., Dong, Y.S., Xu, S.J., Zhou, R.H., Li, X.Q. 1990. Gene mapping of resistance to powdery mildew in Triticum persicum — Aegilops tauschii amphiploid Am3. Agricultural Sciences in China 4: 17–21.

    CAS  Google Scholar 

  11. Della Gatta, C., Tanzarella, O.A., Resta, P., Blanco, A. 1984. Protein content in a population of Haynaldia villosa and electrophoretic pattern of the amphiploid T. durum × H. villosa. In: Porceddu, E. (ed.), Breeding Methodologies in Durum Wheat and Triticale. University of Tuscia, Viterbo (Italy), pp. 39–43.

    Google Scholar 

  12. Fernandez-Escober, J., Martin, A. 1989. A self-fertile trigeneric hybrid in the Triticeae involving Triticum, Hordeum and Secale. Euphytica 42: 291–296.

    Google Scholar 

  13. Hyde, B.B. 1953. Addition of individual Haynaldia villosa chromosomes to hexaploid wheat. Am. J. Bot. 40: 174–182.

    Google Scholar 

  14. Jiang, J.M., Friebe, B., Gill, B.S. 1994. Recent advances in alien gene transfer in wheat. Euphytica 73: 199–212.

    Google Scholar 

  15. Kema, G.H.J., Lange, W., Silfhout, C.H. 1995. Differential suppression of stripe rust resistance in synthetic wheat hexaploids derived from Triticum turgidum subsp. dicoccoides and Aegilops squarrosa. Phytopathol. 85: 425–429.

    Google Scholar 

  16. Lage, J., Skovmand, B., Andersen, S.B. 2003. Expression and suppression of resistance to greenbug (Homoptera: Aphididae) in synthetic hexaploid wheats derived from Triticum dicoccum × Aegilops tauschii crosses. J. Econ. Entomol. 96: 202–206.

    CAS  PubMed  Google Scholar 

  17. Lage, J., Skovmand, B., Andersen, S.B. 2004. Field evaluation of emmer wheat derived synthetic hexaploid wheats for resistance to Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entomol. 97: 1065–1070.

    CAS  PubMed  Google Scholar 

  18. Lage, J., Skovmand, B., Pena, R.J., Andersen, S.B. 2006. Grain quality of emmer wheat derived synthetic hexaploid wheats. Genet. Resour. Crop Evol. 53: 955–962

    Google Scholar 

  19. Leath, S., Heun, M. 1990. Identification of powdery mildew resistance genes in cultivars of soft red winter wheat. Plant Dis. 74: 747–752.

    Google Scholar 

  20. Li, X.F., Song, Z.Q., Liu, S.B., Gao, J.R., Lu, W.H., Wang, H.G. 2006. Cytogenetic study of a trigenric (Triticlae × Tritileymus) hybrid. Euphytica 150: 117–122.

    Google Scholar 

  21. Linde-Laursen, I., Jensen, H.P., Jørgensen, J.H. 1973. Resistance of Triticale, Aegilops, and Haynaldia species to the take-all fungus, Gaeumannomyces graminis. Z. Pflanzen. 70: 200–213.

    Google Scholar 

  22. Liu, D.J., Chen, P.D., Pei, G.Z., Wang, X.N., Qiu, B.X., Wang, S.L. 1988. Transfer of Haynaldia villosa chromosomes into Triticum aestivum. In: Miller, T.E., Koebner, R.M.D. (eds), Proceedings of the 7th International Wheat Genetics Symposium. Institute of Plant Science Research, Cambridge, UK, pp. 355–361.

    Google Scholar 

  23. Liu, S.B., Wang, H.G., Zhang, X.Y., Li, X.F., Li, D.Y., Duan, X.Y., Zhou, Y.L. 2005. Molecular cytogenetic identification of a wheat — Thinopyrum intermedium (Host) Barkworth & DR Dewey partial amphiploid resistant to powdery mildew. J. Integr. Plant Bio. 47: 726–733.

    CAS  Google Scholar 

  24. Ma, H., Singh, R.P., Mujeeb-Kazi, A. 1995a. Resistance to stripe rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica 82: 117–124.

    Google Scholar 

  25. Ma, H., Singh, R.P., Mujeeb-Kazi, A. 1995b. Suppression/expression of resistance to stripe rust in synthetic hexaploid wheat (Triticum turgidum × T. tauschii). Euphytica 83: 87–93.

    Google Scholar 

  26. May, C.E., Lagudah, E.S. 1992. Inheritance in hexaploid wheat of Septoria tritici blotch resistance and other characteristics derived from Triticum tauschii. Aust. J. Agric. Res. 43: 433–442.

    Google Scholar 

  27. Minelli, S., Ceccarelli, M., Mariani, M., Pace, C.D., Cionini, P.G. 2005. Cytogenetics of Triticum × Dasypyrum hybrids and derived lines. Cytogenet. Genome Res. 109: 385–392.

    CAS  PubMed  Google Scholar 

  28. Mujeeb-Kazi, A., Rosas, V., Roldan, S. 1996. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmal. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s.lat. × T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet. Resour. Crop Evol. 43: 129–134.

    Google Scholar 

  29. Mujeeb-Kazi, A., Gul, A., Farooq, M., Rizwan, S., Ahmad, I. 2008. Rebirth of synthetic hexaploids with global implications for wheat improvement. Aust. J. Agr. Res. 59: 391–398.

    Google Scholar 

  30. Pestsova, E., Ganal, M.W., Röder, M.S. 2000. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43: 689–697.

    CAS  PubMed  Google Scholar 

  31. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M., Leroy, P., Ganal, M.W. 1998. Amicrosatellite map of wheat. Genetics 149: 2007–2023.

    PubMed  PubMed Central  Google Scholar 

  32. Sears, E.R. 1953. Addition of the genome of Haynaldia villosa to Triticum aestivum. Am. J. Bot. 40: 168–174.

    Google Scholar 

  33. Sharma, H.C. 1995. How wide can a wide cross be. Euphytica 82: 43–64.

    Google Scholar 

  34. Sprague, R. 1936. Relative susceptibility of certain species of Gramineae to Cercosporella herpotrichoides. J. Agric. Res. 53: 659–670.

    Google Scholar 

  35. Sun, X.L., Liu, D., Zhang, H.Q., Huo, N.X., Zhou, R.H., Jia, J.Z. 2006. Identification and mapping of two new genes conferring resistance to powdery mildew from Aegilops tauschii (Coss.) Schmal. J. Integr. Plant Biol. 48: 1204–1209.

    CAS  Google Scholar 

  36. Trethowan, R.M., Mujeeb-Kazi, A. 2008. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci. 48: 1255–1265.

    Google Scholar 

  37. Villareal, R.L., Mujeeb-Kazi, A., Fuentes-Davila, G., Rajaram, S., del Toro, E. 1994. Resistance to karnal bunt (Tilletia indica Mitra) in synthetic hexaploid wheats derived from Triticum turgidum × T. tauschii. Plant Breed. 112: 63–69.

    Google Scholar 

  38. Villareal, R.L., Singh, R.P., Mujeeb-Kazi, A. 1992. Expression of resistance to Puccinia recondita f. sp. tritici in synthetic hexaploid wheats. Vortr. Pflanzenzüchtg. 24: 253–255.

    Google Scholar 

  39. Yildirim, A., Jones, S.S., Murray, T.D., Line, R.F. 2000. Evaluation of Dasypyrum villosum populations for resistance to cereal eyespot and stripe rust pathogens. Plant Dis. 84: 40–44.

    CAS  PubMed  Google Scholar 

  40. Zhang, Q.P., Li, Q., Wang, X.E., Wang, H.Y., Lang, S.P., Wang, Y.N., Wang, S.L., Chen, P.D., Liu, D.J. 2005. Development and characterization of a Triticum aestivum — Haynaldia villosa translocation line T4VS·4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica 145: 317–320.

    CAS  Google Scholar 

  41. Zhu, Z.D., Zhou, R.H., Kong, X.Y., Dong, Y.S., Jia, J.Z. 2005. Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome 48: 585–590.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Wang.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Li, X.F., Liu, H.Y., Gao, J.R. et al. Development of two powdery mildew and stripe rust resistant wheat lines from (Triticum turgidum × Haynaldia villosa amphiploid) × synthetic wheat hybrids. CEREAL RESEARCH COMMUNICATIONS 38, 307–316 (2010). https://doi.org/10.1556/CRC.38.2010.3.1

Download citation

Keywords

  • synthetic hexaploid wheat
  • Haynaldia villosa
  • genomic in situ hybridization (GISH)
  • SSR