Advertisement

Cereal Research Communications

, Volume 38, Issue 3, pp 307–316 | Cite as

Development of two powdery mildew and stripe rust resistant wheat lines from (Triticum turgidum × Haynaldia villosa amphiploid) × synthetic wheat hybrids

  • X. F. Li
  • H. Y. Liu
  • J. R. Gao
  • H. WangEmail author
Genetics

Abstract

Among the progenies of crossing Triticum turgidum — Haynaldia villosa amphiploid with synthetic hexaploid wheat (T. carthlicum / Aegilops tauschii) Am3, two lines (SN030713 and SN05078), with good resistance to stripe rust and powdery mildew, were developed. Cytological studies demonstrated that SN030713 contained 42 chromosomes and formed 21 bivalents at meiotic metaphase I. SN05078 contained 28 chromosomes and formed 14 bivalents. Genomic in situ hybridization analysis using H. villosa V genomic DNA as the probe showed SN030713 and SN05078 had no large H. villosa chromosome fragments. PCR analysis with H. villosa specific primer pHv29 showed that H. villosa genetic materials were introgressed in these two lines. SSR analysis indicated that the genomic composition of SN030713 was 2n = 6x = 42 (AABBDD), and SN05078 was 2n = 4x = 28 (AABB). Introgressed Ae. tauschii genetic materials in SN05078 were also detected.

Keywords

synthetic hexaploid wheat Haynaldia villosa genomic in situ hybridization (GISH) SSR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao, Y.G., Li, X.F., Liu, S.B., Cui, F., Wang, H.G. 2009. Molecular cytogenetic characterization of a new wheat-thinopyrum intermedium partial amphiploid resistant to powdery mildew and stripe rust. Cytogenet. Genome Res. 126: 390–395.PubMedCrossRefGoogle Scholar
  2. Blanco, A., Simeone, R., Resta, P. 1987. The addition of Dasypyrum villosum (L.) Candargy chromosomes to durum wheat (Triticum durum Desf.). Theor. Appl. Genet. 74: 328–333.PubMedCrossRefGoogle Scholar
  3. Bryan, G.J., Collins, A.J., Stephenson, P., Orry, A., Smith, J.B., Gale, M.D. 1997. Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor. Appl. Genet. 94: 557–563.CrossRefGoogle Scholar
  4. Cao, A.Z., Chen, Q.Z., Wang, H.Y., Wang, X.E., Chen, P.D. 2007. Development of a PCR molecular marker to identify Haynaldia villosa based on its specific retrotransposon sequence. Acta Bot. Boreal.-Occident. Sin. 6: 1078–1084.Google Scholar
  5. Chen, H.M., Li, L.Z., Wei, X.Y., Li, S.S., Lei, T.D., Hu, H.Z., Wang, H.G., Zhang, X.S. 2005. Development of chromosome location and genetic mapping of EST-SSR markers in wheat. Chinese Sci. Bull. 50: 2328–2336.CrossRefGoogle Scholar
  6. Chen, P.D., Liu, D.J. 1982. Cytogenetical studies of hybrid progenies between Triticum aestivum and Haynaldia villosa. J. Nanjing Agri. Coll. 4: 1–16.Google Scholar
  7. Chen, P.D., Qi, L.L., Zhou, B., Zhang, S.Z., Liu, D.J. 1995. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor. Appl. Genet. 91: 1125–1128.PubMedCrossRefGoogle Scholar
  8. Chen, P.D., Zhang, S.Z., Wang, X.E., Wang, S.L., Zhou, B., Feng, Y.G., Liu, D.J. 2002. New wheat variety Nannong 9918 with high yield and powdery mildew resistance. J. Nanjing Agric. Univ. 25: 105–106.Google Scholar
  9. Chen, Q., Conner, R.L., Laroche, A. 1996. Molecular characterization of Haynaldia villosa chromatin in wheat lines carrying resistance to wheat curl mite colonization. Theor. Appl. Genet. 93: 679–684.PubMedCrossRefGoogle Scholar
  10. Chen, S.A., Dong, Y.S., Xu, S.J., Zhou, R.H., Li, X.Q. 1990. Gene mapping of resistance to powdery mildew in Triticum persicum — Aegilops tauschii amphiploid Am3. Agricultural Sciences in China 4: 17–21.Google Scholar
  11. Della Gatta, C., Tanzarella, O.A., Resta, P., Blanco, A. 1984. Protein content in a population of Haynaldia villosa and electrophoretic pattern of the amphiploid T. durum × H. villosa. In: Porceddu, E. (ed.), Breeding Methodologies in Durum Wheat and Triticale. University of Tuscia, Viterbo (Italy), pp. 39–43.Google Scholar
  12. Fernandez-Escober, J., Martin, A. 1989. A self-fertile trigeneric hybrid in the Triticeae involving Triticum, Hordeum and Secale. Euphytica 42: 291–296.Google Scholar
  13. Hyde, B.B. 1953. Addition of individual Haynaldia villosa chromosomes to hexaploid wheat. Am. J. Bot. 40: 174–182.CrossRefGoogle Scholar
  14. Jiang, J.M., Friebe, B., Gill, B.S. 1994. Recent advances in alien gene transfer in wheat. Euphytica 73: 199–212.CrossRefGoogle Scholar
  15. Kema, G.H.J., Lange, W., Silfhout, C.H. 1995. Differential suppression of stripe rust resistance in synthetic wheat hexaploids derived from Triticum turgidum subsp. dicoccoides and Aegilops squarrosa. Phytopathol. 85: 425–429.CrossRefGoogle Scholar
  16. Lage, J., Skovmand, B., Andersen, S.B. 2003. Expression and suppression of resistance to greenbug (Homoptera: Aphididae) in synthetic hexaploid wheats derived from Triticum dicoccum × Aegilops tauschii crosses. J. Econ. Entomol. 96: 202–206.PubMedCrossRefGoogle Scholar
  17. Lage, J., Skovmand, B., Andersen, S.B. 2004. Field evaluation of emmer wheat derived synthetic hexaploid wheats for resistance to Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entomol. 97: 1065–1070.PubMedCrossRefGoogle Scholar
  18. Lage, J., Skovmand, B., Pena, R.J., Andersen, S.B. 2006. Grain quality of emmer wheat derived synthetic hexaploid wheats. Genet. Resour. Crop Evol. 53: 955–962CrossRefGoogle Scholar
  19. Leath, S., Heun, M. 1990. Identification of powdery mildew resistance genes in cultivars of soft red winter wheat. Plant Dis. 74: 747–752.CrossRefGoogle Scholar
  20. Li, X.F., Song, Z.Q., Liu, S.B., Gao, J.R., Lu, W.H., Wang, H.G. 2006. Cytogenetic study of a trigenric (Triticlae × Tritileymus) hybrid. Euphytica 150: 117–122.CrossRefGoogle Scholar
  21. Linde-Laursen, I., Jensen, H.P., Jørgensen, J.H. 1973. Resistance of Triticale, Aegilops, and Haynaldia species to the take-all fungus, Gaeumannomyces graminis. Z. Pflanzen. 70: 200–213.Google Scholar
  22. Liu, D.J., Chen, P.D., Pei, G.Z., Wang, X.N., Qiu, B.X., Wang, S.L. 1988. Transfer of Haynaldia villosa chromosomes into Triticum aestivum. In: Miller, T.E., Koebner, R.M.D. (eds), Proceedings of the 7th International Wheat Genetics Symposium. Institute of Plant Science Research, Cambridge, UK, pp. 355–361.Google Scholar
  23. Liu, S.B., Wang, H.G., Zhang, X.Y., Li, X.F., Li, D.Y., Duan, X.Y., Zhou, Y.L. 2005. Molecular cytogenetic identification of a wheat — Thinopyrum intermedium (Host) Barkworth & DR Dewey partial amphiploid resistant to powdery mildew. J. Integr. Plant Bio. 47: 726–733.CrossRefGoogle Scholar
  24. Ma, H., Singh, R.P., Mujeeb-Kazi, A. 1995a. Resistance to stripe rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica 82: 117–124.CrossRefGoogle Scholar
  25. Ma, H., Singh, R.P., Mujeeb-Kazi, A. 1995b. Suppression/expression of resistance to stripe rust in synthetic hexaploid wheat (Triticum turgidum × T. tauschii). Euphytica 83: 87–93.CrossRefGoogle Scholar
  26. May, C.E., Lagudah, E.S. 1992. Inheritance in hexaploid wheat of Septoria tritici blotch resistance and other characteristics derived from Triticum tauschii. Aust. J. Agric. Res. 43: 433–442.CrossRefGoogle Scholar
  27. Minelli, S., Ceccarelli, M., Mariani, M., Pace, C.D., Cionini, P.G. 2005. Cytogenetics of Triticum × Dasypyrum hybrids and derived lines. Cytogenet. Genome Res. 109: 385–392.PubMedCrossRefGoogle Scholar
  28. Mujeeb-Kazi, A., Rosas, V., Roldan, S. 1996. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmal. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s.lat. × T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet. Resour. Crop Evol. 43: 129–134.CrossRefGoogle Scholar
  29. Mujeeb-Kazi, A., Gul, A., Farooq, M., Rizwan, S., Ahmad, I. 2008. Rebirth of synthetic hexaploids with global implications for wheat improvement. Aust. J. Agr. Res. 59: 391–398.CrossRefGoogle Scholar
  30. Pestsova, E., Ganal, M.W., Röder, M.S. 2000. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43: 689–697.CrossRefGoogle Scholar
  31. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M., Leroy, P., Ganal, M.W. 1998. Amicrosatellite map of wheat. Genetics 149: 2007–2023.PubMedPubMedCentralGoogle Scholar
  32. Sears, E.R. 1953. Addition of the genome of Haynaldia villosa to Triticum aestivum. Am. J. Bot. 40: 168–174.CrossRefGoogle Scholar
  33. Sharma, H.C. 1995. How wide can a wide cross be. Euphytica 82: 43–64.CrossRefGoogle Scholar
  34. Sprague, R. 1936. Relative susceptibility of certain species of Gramineae to Cercosporella herpotrichoides. J. Agric. Res. 53: 659–670.Google Scholar
  35. Sun, X.L., Liu, D., Zhang, H.Q., Huo, N.X., Zhou, R.H., Jia, J.Z. 2006. Identification and mapping of two new genes conferring resistance to powdery mildew from Aegilops tauschii (Coss.) Schmal. J. Integr. Plant Biol. 48: 1204–1209.CrossRefGoogle Scholar
  36. Trethowan, R.M., Mujeeb-Kazi, A. 2008. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci. 48: 1255–1265.CrossRefGoogle Scholar
  37. Villareal, R.L., Mujeeb-Kazi, A., Fuentes-Davila, G., Rajaram, S., del Toro, E. 1994. Resistance to karnal bunt (Tilletia indica Mitra) in synthetic hexaploid wheats derived from Triticum turgidum × T. tauschii. Plant Breed. 112: 63–69.CrossRefGoogle Scholar
  38. Villareal, R.L., Singh, R.P., Mujeeb-Kazi, A. 1992. Expression of resistance to Puccinia recondita f. sp. tritici in synthetic hexaploid wheats. Vortr. Pflanzenzüchtg. 24: 253–255.Google Scholar
  39. Yildirim, A., Jones, S.S., Murray, T.D., Line, R.F. 2000. Evaluation of Dasypyrum villosum populations for resistance to cereal eyespot and stripe rust pathogens. Plant Dis. 84: 40–44.PubMedCrossRefGoogle Scholar
  40. Zhang, Q.P., Li, Q., Wang, X.E., Wang, H.Y., Lang, S.P., Wang, Y.N., Wang, S.L., Chen, P.D., Liu, D.J. 2005. Development and characterization of a Triticum aestivum — Haynaldia villosa translocation line T4VS·4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica 145: 317–320.CrossRefGoogle Scholar
  41. Zhu, Z.D., Zhou, R.H., Kong, X.Y., Dong, Y.S., Jia, J.Z. 2005. Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome 48: 585–590.PubMedCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Crop BiologyShandong Agricultural UniversityTai’anChina
  2. 2.Subcentre of National Wheat Improvement Center, Agronomy CollegeShandong Agricultural UniversityTai’anChina

Personalised recommendations