Advertisement

Cereal Research Communications

, Volume 38, Issue 2, pp 220–232 | Cite as

Susceptibility of hulled and hulless barley doubled haploids to Fusarium culmorum head blight

  • T. Warzecha
  • T. AdamskiEmail author
  • Z. Kaczmarek
  • M. Surma
  • P. Goliński
  • J. Perkowski
  • J. Chełkowski
  • H. Wiśniewska
  • K. Krystkowiak
  • A. Kuczyńska
Article

Abstract

Fusarium culmorum (W.G.Sm.) Sacc. is a pathogen affecting seedling, head, root and stem of barley, and the infection can result in significantly reduction of yield and grain quality. The aim of the studies was to compare the susceptibility of hulless and hulled barley doubled haploids (DH) to infection with F. culmorum. Thirty DH lines (15 hulled and 15 hulless) and their parents were inoculated with a conidial suspension of the isolate of F. culmorum KF350 (IPO348-01) (nivalenol chemotype). Experiment was carried out over six years. Spike infection score, kernel weight per spike, 1000-kernel weight and percentage of plump kernels (>2.5 mm) were examined in control and inoculated plants. In addition, in three environments, nivalenol (NIV) accumulation in infected kernels was analysed. Significant influence of genotypes and environments on spike infection, yield-related traits and NIV accumulation was found in inoculated plants. Hulless genotypes appeared to be more susceptible to infection than the hulled lines. The difference in NIV accumulation was not important — mean NIV content over three environments was similar for both groups of DH lines. Results suggest that glumes adhered to seed may protect it, to a certain degree, against penetration of the pathogen inside the seed.

Keywords

spring barley nivalenol yield reduction Fusarium head blight 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamski, T., Chełkowski, J., Goliński, P., Kaczmarek, Z., Kostecki, M., Perkowski, J., Surma, M., Wiśniewska, H. 1999. Yield reduction and mycotoxin accumulation in barley doubled haploids inoculated with Fusarium culmorum (W.G.Sm.). Sacc. J. Appl. Genet. 40:73–84.Google Scholar
  2. Arseniuk, E., Foremska, E., Góral, T., Chełkowski, J. 1999. Fusarium head blight reactions and accumulation of deoxynivalenol (DON) and some of its derivatives in kernels of wheat, triticale and rye. J. Phytopathol. 147:577–590.CrossRefGoogle Scholar
  3. Baidoo, S.K., Liu, Y.G., Yungblut, D. 1998. Effect of microbial enzyme supplementation on energy, amino acid digestibility and performance of pigs fed hulless barley based diets. Can. J. Anim. Sci. 78:625–631.CrossRefGoogle Scholar
  4. Bhatty, R.S. 1986. The potential of hulless barley — a review. Cereal Chem. 63:97–103.Google Scholar
  5. Bottalico, A. 1998. Fusarium diseases of cereals: species complex and related mycotoxin profiles in Europe. J. Plant Pathol. 80:85–103.Google Scholar
  6. Bottalico, A., Perrone, G. 2002. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur. J. Plant Pathol. 108:998–103.CrossRefGoogle Scholar
  7. Buerstmayr, H., Legzdina, L., Steiner, B., Lemmens, M. 2004. Variation for resistance to Fusarium head blight in spring barley. Euphytica 137:279–290.CrossRefGoogle Scholar
  8. Chełkowski, J. 1989. Formation of mycotoxins produced by Fusaria in heads of wheat, triticale and rye. In: Chełkowski J. (ed)., Fusarium. Mycotoxins, Taxonomy and Pathogenicity. Elsevier Science Publishers B.V., The Netherlands. pp. 63–84.Google Scholar
  9. Chełkowski, J. 1998. Distribution of Fusarium species and their mycotoxins in cereal grains. In: Sinha, K.K. and Bathnagar, G.D. (eds), Mycotoxins in Agricultural and Food Safety. Mercel Dekker, New York, USA, pp. 45–64.Google Scholar
  10. Chełkowski, J., Wisniewska, H., Adamski, T., Goliński, P., Kaczmarek, Z., Kostecki, M., Perkowski, J., Surma, M. 2000. Effects of genotypes and environmental conditions on yield reduction and mycotoxin accumulation in barley doubled haploids inoculated with Fusarium culmorum (W.G.Sm.). Sacc. J. Phytopathol. 148:541–545.CrossRefGoogle Scholar
  11. Clear, R.M., Patrick, S.K., Nowicki, T., Gaba, D., Edney, M., Babb, J.C. 1997. The effect of hull removal and pearling on Fusarium species and trichothecenes in hulless barley. Can. J. Plant Sci. 77:161–166.CrossRefGoogle Scholar
  12. Desjardins, A.E. 2006. Fusarium mycotoxins. Chemistry, genetics, and biology. The American Phytopathological Society, St. Paul, MN, USA, 260 pp.Google Scholar
  13. Fornelli, F., Minervini, F., Mule, G. 2004. Cytotoxicity induced by nivalenol, deoxynivalenol and fumonisin B, in the SF-9 insect cell line. In Vitro Cellular & Developmental Biology. Animal 40:166–171.Google Scholar
  14. Gaines, R.L., Bechtel, D.B., Pomeranz, Y. 1985. A microscopic study on the development of a layer in barley that causes hull-caryopsis adherence. Cereal Chem. 62:35.Google Scholar
  15. Kasha, K.J., Kao, K.N. 1970. High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876.CrossRefGoogle Scholar
  16. Kulik, T., 2008. Detection of Fusarium tricinctum from cereal grain using PCR assay. J. Appl. Genet. 49:305–311.CrossRefGoogle Scholar
  17. Lauren, D.R., Sayer, S.T., di Menna, M.E. 1992. Trichothecene production by Fusarium species isolated from grain and pasture throughout New Zealand. Mycopathologia 120:167–176.CrossRefGoogle Scholar
  18. Legzdina, L., Buerstmayr, H. 2004. Comparison of infection with Fusarium head blight and accumulation of mycotoxins in grain of hulless and covered barley. J. Cereal Sci. 40:61–67.CrossRefGoogle Scholar
  19. Ma, H.X., Ge, H.J., Zhang, X., Lu, W.Z., Yu, D.Z., Chen, H., Chen, J.M. 2009. Resistance to Fusarium head blight and deoxynivalenol accumulation in Chinese barley. J. Phytopathol. 157:166–171.CrossRefGoogle Scholar
  20. Mesterházy, Á. 1995. Types and components of resistance to Fusarium head blight of wheat. Plant Breeding 114:377–386.CrossRefGoogle Scholar
  21. Mesterházy, Á. 2002. Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and resistance to Fusarium head blight. Eur. J. Plant Pathol. 108:675–684.CrossRefGoogle Scholar
  22. McMullen, M.P., Enz, J., Lukach, J., Stover, R. 1997. Environmental conditions associated with Fusarium head blight epidemics of wheat and barley in the Northern Great Plains. North America. Cereal Res. Commun. 25:777–778.Google Scholar
  23. Minervini, F., Fornelli, F., Flynn, K.M. 2004. Toxicity and apoptosis induced by the mycotoxins nivalenol, deoxynivalenol and fumonisin B1 in a human erythroleukemia cell line. Toxicology in Vitro 18:21–28.CrossRefGoogle Scholar
  24. Perkowski, J., Chełkowski, J. 1993. A comparison of the deoxynivalenol and 3-acetyl-deoxynivalenol content in naturally infected wheat in the years 1986–1988. Post. Nauk Roln. 242:83–89.Google Scholar
  25. Perkowski, J., Kiecana, I., Chełkowski, J. 1995. Susceptibility of barley cultivars and lines to Fusarium infection and mycotoxin accumulation in kernels. J. Phytopathol. 143:547–551.CrossRefGoogle Scholar
  26. Perkowski, J., Kiecana, I., Kaczmarek, Z. 2003. Natural occurrence and distribution of Fusarium toxins in contaminated barley cultivars. Eur. J. Plant Pathol. 109:331–339.CrossRefGoogle Scholar
  27. Pickering, R.A., Devaux, P. 1992. Haploid production: Approaches and use in plant breeding. In: Barley: Genetics, biochemistry, molecular biology and biotechnology. CAB International. Wallingford, UK. pp. 519–547.Google Scholar
  28. Quarta, A., Mita, G., Haidukowski, M., Santino, A., Mule, G., Visconti, A. 2005. Assessment of trichothecene chemotypes of Fusarium culmorum occurring in Europe. Food Additives and Contaminants 22:309–315.CrossRefGoogle Scholar
  29. Robertson, D.W. 1937. Inheritance in barley. II. Genetics 22:443–451.PubMedPubMedCentralGoogle Scholar
  30. Rotter, B.A., Prelusky, D.B., Pestka, J.J. 1996. Toxicology of deoxynivalenol (vomitoxin). J. Toxicology and Environmental Health 48:1–34.CrossRefGoogle Scholar
  31. Schwarz, P., Casper, H., Barr, J., Musial, M. 1997. Impact of Fusarium head blight on the malting and brewing quality of barley. Cereal Res. Commun. 25:813–814.Google Scholar
  32. Stȩpień, Ł., Popiel, D., Koczyk, G., Chełkowski, J. 2008. Wheat-infecting Fusarium species in Poland — their chemotypes and frequencies revealed by PCR assay. J. Appl. Genet. 49:433–441.CrossRefGoogle Scholar
  33. Ueno, Y. 1983. General toxicity. In: Ueno, Y. (ed.), Developments in Food Science IV, Trichothecenes-Chemical, Biological and Toxicological Aspects. Elsevier. Amsterdam, The Netherlands, pp. 135–146.Google Scholar
  34. Wiśniewska, H., Buśko, M. 2005. Evaluation of spring wheat resistance to Fusarium seedling blight and head blight. Biologia, Bratislava, Slovakia 60:287–293.Google Scholar
  35. Woźniak, W., Grundas, S., Rybiński, W. 2006. Mechanical characteristics of hulless kernels in barley mutants (in Polish). Acta Agrophysica 8:1041–1047.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

Authors and Affiliations

  • T. Warzecha
    • 1
  • T. Adamski
    • 2
    Email author
  • Z. Kaczmarek
    • 2
  • M. Surma
    • 2
  • P. Goliński
    • 3
  • J. Perkowski
    • 3
  • J. Chełkowski
    • 2
  • H. Wiśniewska
    • 2
  • K. Krystkowiak
    • 2
  • A. Kuczyńska
    • 2
  1. 1.Agricultural University of CracowCracowPoland
  2. 2.Institute of Plant GeneticsPolish Academy of SciencesPoznańPoland
  3. 3.Department of ChemistryPoznań University of Life SciencesPoznańPoland

Personalised recommendations