Advertisement

Cereal Research Communications

, Volume 38, Issue 2, pp 163–174 | Cite as

Identification of QTLs and associated molecular markers related to starch degradation in wheat seedlings (Triticum aestivum L.) under saline stress

  • J. V. García-SuárezEmail author
  • J. L. Díaz de León
  • M. S. Röder
Article

Abstract

Mapping of quantitative trait loci (QTL) was carried out in a set of 114 RILs of the International Triticeae Mapping Initiative (ITMI) mapping population under salt stress. Seedling population was grown during 8 days, under salt treatment (Hoagland’s ½ strength + 110 mM NaCl, EC 12.4 mS/cm) and normal treatment (Hoagland’s ½ strength, EC 0.9 mS/cm). We calculated starch degradation, measuring the dry weight of the grains on the 4th, 6th and 8th days of culturing. Formation of biomass was calculated measuring leaf and root length on the 4th, 6th and 8th days of culture. Interval mapping resulted in 13 QTLs, 2 major QTLs (LOD>3) and 11 minors QTLs (LOD>2). A total of 10 QTLs were associated with saline treatment and 3 QTLs at normal treatment. The data show that a high percentage of QTLs were in chromosomes 2B (3, 23.0%), and 1A (3, 23.0%), followed by 4D (2, 13.6%).

Keywords

QTLs molecular markers Triticum aestivum salinity rate of starch degradation leaf length root length 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batley, I.L., Hayden, M.J., Cai, S., Sharp, P.J., Cornish, G.B., Morell, M.K. Appels, R. 2001. Genetic mapping of commercially significant starch characteristics in wheat crosses. Aust. J. Agric. Res. 52:1287–1296.CrossRefGoogle Scholar
  2. Bernstein, L., Hayward, H.E. 1958. Physiology of salt tolerance. Annu. Rev. Plant Physiol. 9:25.CrossRefGoogle Scholar
  3. Boggini, G., Cattaneo, M., Paganoni, C., Vaccino, P. 2001. Genetic variation for waxy proteins and starch properties in Italian wheat germoplasm. Euphytica 119:113–116.CrossRefGoogle Scholar
  4. Cadalen, T., Sourdille, P., Charmet, G., Tixier, M.H., Gay, G., Boeuf, C., Bernard, S., Leroy, P., Bernard, M. 1998. Molecular linked to genes affecting plant height wheat using a doubled-haploid population. Theor. Appl. Genet. 96:933–940.CrossRefGoogle Scholar
  5. Cattivelli, L., Baldi, P., Crosatti, C., Di Fonso, N., Faccioli, P., Grossi, M., Mastrangelo, A., Pecchioni, N., Stanca, M. 2002. Chromosome regions and stress related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol. Biol. 48:649–665.CrossRefGoogle Scholar
  6. Díaz de León, J.L., Escoppinichi, R., Zavala, R., Mujeeb-Kazi, A. 2000a. A sea-water testing protocol and the performance of a tester set of accumulated wheat germplasms. Annu. Wheat Newsl. 46:88–90.Google Scholar
  7. Díaz de León, J.L., Zavala, R., Escoppinichi, R., Mujeeb-Kazi, A. 2000b. Identification of four bread cultivars tolerant to salinity following sea-water field evaluations as varietal candidates for Baja California, México. Annu. Wheat Newsl. 46:90–91.Google Scholar
  8. Díaz de León, J.L., Escoppinichi, R., Molina, E., López-Cesati, R., Mujeeb-Kazi, A. 2001. Salt tolerant bread wheat germplasm. Annu. Wheat Newsl. 47:117–118.Google Scholar
  9. Dubcovsky, J., Santa Maria, G., Epstein, E., Luo, M.C., Dvorak, J. 1996. Mapping of the K+-Na discrimination locus Knal in wheat. Theor. Appl. Genet. 92:448–454.CrossRefGoogle Scholar
  10. Dvorak, J., Ross, K., Medlinger, S. 1985. Transfer of salt tolerance from Elytrigia ponica (Podp.) Holub to wheat by the addition of an incomplete Elytrigia genome. Crop Sci. 25:306–309.CrossRefGoogle Scholar
  11. Dvorak, J., Ross, K. 1986. Expression of tolerance of N+, K+, Mg+2, Cl, and SO−2 ions and sea water in the amphiploid of Triticum aestivum × Elytrigia elongata. Crop Sci. 2:658–660.CrossRefGoogle Scholar
  12. Dvorak, J., Gorham, J. 1992. Methodology of gene transfer by homoeologous recombination into Triticum turgidum: Transfer of K+/Na+ discrimination from Triticum aestivum. Genome 35:639–646.CrossRefGoogle Scholar
  13. Dvorak, J., Noaman, M.M., Goyal, S., Gorham, J. 1994. Enhancement of the salt tolerance of Triticum turgidum L. by the Kna1 locus transferred from the Triticum aestivum L. chromosome 4D by homoeologous recombination. Theor. Appl. Genet. 87:872–877.CrossRefGoogle Scholar
  14. Franco, M.K., Gámez, H., Zavala, F., Moreno, S., Díaz de León, J.L., Martínez, S., González, M. 2004. Degradación de almidón y actividad de alfa amilasa en semillas de sorgo bajo sequía osmótica (Degradation of starch and alpha amylase activity in sorghum seeds under osmotic drought). RESPIN. Special Issue. Nuevo León, Mexico. 6:65. (In Spanish)Google Scholar
  15. Gorham, J., Hardy, C., Wyn-Jones, R.G., Joppa, L., Law, C.N. 1987. Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor. Appl. Genet. 74:484–488.CrossRefGoogle Scholar
  16. Gorham, J. 1992. Salt tolerance of plants. Sci. Prog. Oxford, UK. 76:273–285.Google Scholar
  17. James, R.A., Davenport, R.J., Munns, R. 2006. Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax21. Plant Physiol. 142:1537–1547.CrossRefGoogle Scholar
  18. Kingsbury, R.W., Epstein, E. 1984. Selection for salt-resistant spring wheat. Crop Sci. 24:310–315.CrossRefGoogle Scholar
  19. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, I. 1987. MAPMARKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181.CrossRefGoogle Scholar
  20. Läuchli, A. 1984. Salt exclusion: and adaptation of legumes for crops and pastures under saline conditions. In: Staples, R.C. (ed.), Salinity tolerance in plants: Strategies for crop improvement. Wiley, New York. USA. pp. 171–187.Google Scholar
  21. Li, Z., Rahman, S., Kosar, J., Hashemi, B., Mourille, G., Appels, R., Morell, M.K. 1999. Cloning and characterization of a gene encording wheat starch synthase. Theor. Appl. Genet. 98:1208–1216.CrossRefGoogle Scholar
  22. Lorenz, O.A., Maynard, D.N. 1980. Knott’s handbook for vegetable growers. 2nd edition. Wiley-Interscience. New York, USA, 390 pp.Google Scholar
  23. Masoj, P., Zawistowski, J., Howes, N.K., Aung, T., Gale, M.D. 1993. Polymorphism and chromosomal location of endogenous alfa-amylase inhibitor genes in common wheat. Theor. Appl. Genet. 85:1043–1048.CrossRefGoogle Scholar
  24. McIntosh, R.A., Hart, G.E., Devos, K.M., Gale, M.D., Rogers, W.J. 1998. Catalogue of gene symbols for wheat. In: Slinkard, A.E. (ed.), Proc. Ninth International Wheat Genetics Symposium, Vol. 5, University Extension Press, University of Saskatchewan, Saskatoon, Canada. pp. 1–236.Google Scholar
  25. Munns, R., Husain, S., Rivelli, A.R., James, R.A., Condon, A.G., Lindsay, M.P., Lagudah, E.S., Schachtman, D.P., Hare, R.A. 2002. Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant and Soil. 247:93–105.CrossRefGoogle Scholar
  26. Munns, R., James, R.A. 2003. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil. 253:201–218.CrossRefGoogle Scholar
  27. Munns, R. 2005. Genes and salt tolerance: bringing them together. New Phytol. 167:645–663.CrossRefGoogle Scholar
  28. Nakamura, T., Yamamori, M., Hidaka, S., Hocino, T. 1992. Expression of HMW Wx protein in Japanese common wheat (Triticum aestivum L.) cultivars. Japan J. Breed. 42:681–685.CrossRefGoogle Scholar
  29. Nakamura, T., Yamamori, M., Hirano, H., Hidaka, S. 1993. Identification of three Wx proteins in wheat (Triticum aestivum L.). Biochem. Genet. 31:75–86.CrossRefGoogle Scholar
  30. Nelson, J.C. 1997. QGENE: Software for mapmarker-based genomic analysis and breeding. Mol. Breed. 3:239–245.CrossRefGoogle Scholar
  31. Okuno, K. 2004. Germplasm enhancement and breeding strategies for crop quality in Japan. Crop Scie. Fourth Internat. Crop Sci. Congress. Available online: http://www.cropscience.org.au/icsc2004/symposia/5/1/2135_okuno.htm
  32. Rahman, S., Kosar-Hashemi, B., Samuel, M.S., Hill, A., Abbot, D.C., Skerritt, J.H., Preiss, J., Appels, R., Morell, M.K. 1995. The mayor proteins of wheat endosperm starch granules. Aust. J. Plant Physiol. 22:793–803.Google Scholar
  33. Reynolds, M.P., Ortiz-Monasterio, J.L., McNab, A. 2001. Application of physiology in wheat breeding. Mexico, D.F.: CIMMYT. pp. 101–110.Google Scholar
  34. Royo, A., Aragues, R. 1993. Validation of salinity crop production functions obtained with the triple line source sprinkler system. Agron. J. 85:795–800.CrossRefGoogle Scholar
  35. SAGARPA. Technical Sheet-19. 2003. http://www.sagarpa.gob.mx/cgcs
  36. Shannon, M.C. 1997. Adaptation of plants to salinity. Advances in Agronomy 60:75–120.CrossRefGoogle Scholar
  37. Sayed, J. 1985. Diversity of salt tolerance in a germplasm collection of wheat (Triticum aestivum). Theor. Appl. Genet. 69:651–657.CrossRefGoogle Scholar
  38. Szabolcs, I. 1994. Soils and salinisation. In: Pessarakali, M. (ed.), Handbook of plant and crop stress. Marcel Dekker, New York, USA. pp. 3–11.Google Scholar
  39. Tester, M., Davenport, R. 2003. Review article Na+ tolerance and Na+ transport in higher plants. Annals of Botany 91:503–527.CrossRefGoogle Scholar
  40. Udall, J.A., Souza, E., Anderson, J., Sorrells, M.E., Zemetra, R.S. 1999. Quantitative trait loci for flour viscosity in winter wheat. Crop. Sci. 39:238–242.CrossRefGoogle Scholar
  41. Vrinten, P.L., Nakamura, T. 2000. Wheat granule-bound starch synthases I and II are encoded by separate genes that are expressed in different tissues. Plant Physiol. 122:255–263.CrossRefGoogle Scholar
  42. Yamamori, M., Endo, T.R. 1996. Variation of starch proteins and chromosome mapping of their coding genes in common wheat. Theor. Appl. Genet. 93:275–281.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

Authors and Affiliations

  • J. V. García-Suárez
    • 1
    Email author
  • J. L. Díaz de León
    • 2
  • M. S. Röder
    • 3
  1. 1.Programa Regional del Noroeste para el Doctorado en Biotecnología Áv de las Americas Cd. UniversitariaUniversidad Autónoma de Sinaloa (UAS)Culiacán SinaloaMéxico
  2. 2.Departamento de AgronomíaUniversidad Autónoma de Baja California Sur (UABCS)La Paz B.C.S.México
  3. 3.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations