Advertisement

Cereal Research Communications

, Volume 38, Issue 1, pp 101–110 | Cite as

Influence of the year and HMW glutenin subunits on end-use quality predictors of bread wheat waxy lines

  • R. Lucas
  • M. Rodríguez-QuijanoEmail author
  • J. F. Vázquez
  • J. M. Carrillo
Quality and Utilization

Abstract

The effects of environment and the high molecular weight glutenins on some quality properties (sedimentation volume, % protein content, and starch pasting viscosity) of bread wheat mutant waxy lines were evaluated. Thirty-eight 100% amylose-free F2 derived F6 and F7 lines were used. The results indicated that the environment did not influence sedimentation volume, mixograph parameters and starch viscosity parameters of waxy flour. Variation in the % protein content was determined mainly by the environment. The sedimentation volume and the mixograph peak development time were influenced by the variation at over expression of Bx7 and the mixograph peak development time was influenced by the Glu-D1 locus. One starch viscosity parameter, time to peak viscosity, was influenced by variation at the Glu-A1 locus. This parameter is significantly lower in the waxy lines than the parent line, which shows the influence of the waxy loci. No significant correlation was observed for sedimentation volume, mixograph parameters, protein content and viscosity parameters of waxy lines.

Keywords

Triticum aestivum bread wheat quality starch viscosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batey, I.L., Curtin, B.M., Moore, S.A. 1997. Optimization of Rapid-Visco-Analyser test conditions for predicting Asian noodle quality. Cereal Chem. 74: 497–501.CrossRefGoogle Scholar
  2. Bettge, A.D., Giroux, M.J., Morris, C.F. 2000. Susceptibility of waxy starch granules to mechanical damage. Cereal Chem. 77: 750–753.CrossRefGoogle Scholar
  3. Butow, B.J., Ma, W., Gale, K.R., Cornish, G.G., Rampling, L., Larroque, O., Morell, M.K., Békés, F. 2003. Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high-molecular-weight glutenin allele has a major impact on wheat flour dough strength. Theor. Appl. Genet. 107: 1524–1532.CrossRefGoogle Scholar
  4. Butow, B.J., Gale, K.R., Ikea, J., Juhász, A., Bed, Z., Tamás, L., Gianibelli, M.C. 2004. Dissemination of the highly expressed Bx7 glutenins subunit (Gli-B1 allele) in wheat as revealed by novel PCR markers and RP-HPLC. Theor. Appl. Genet. 109: 1525–1535.CrossRefGoogle Scholar
  5. Dick, J.A., Quick, J.S. 1983. A modified screening test for rapid estimation of gluten strength in early generation durum wheat breeding lines. Cereal Chem. 60: 315–318.Google Scholar
  6. Echt, C. S., Schwartz, D. 1981. Evidence for the inclusion of controlling elements within the structural gene at the waxy locus in maize. Genetics 99: 275–284.PubMedPubMedCentralGoogle Scholar
  7. Finney, K.F., Shogren, M.D. 1972. A ten-gram mixograph for determining and predicting functional properties of wheats flours. Baker’s Digest 46: 32–35, 38–42, 77.Google Scholar
  8. Fujita, S., Yamamoto, H., Sugimoto, Y., Morita, N., Yam, M. 1998. Thermal and crystalline properties of waxy wheat (Triticum aestivum L.) starch. J. Cereal Sci. 27: 1–5.CrossRefGoogle Scholar
  9. Graybosch, R.A., Souza, E., Berzonsky, W., Baenziger, P.S., Chung, O. 2003. Functional properties of waxy flours: Genotypic and environmental effects. J. Cereal Sci. 38: 69–76.CrossRefGoogle Scholar
  10. Han, Y., Xu, M., Liu, X., Yan, Ch., Korban, S.S., Chen, X., Gu, M. 2004. Genes coding for starches branching enzymes are major contributors to starch viscosity characteristics in waxy rice (Oryza sativa L.). Plant Sci. 166: 357–364.CrossRefGoogle Scholar
  11. Hayakawa, K., Tanaka, K., Nakamura, T., Endo, S., Hoshino, T. 1997. Quality characteristics of waxy hexaploid wheat (Triticum aestivum L.): Properties of starch gelatinization and retrogradation. Cereal Chem. 74: 576–580.CrossRefGoogle Scholar
  12. Juhász, A., Larroque, O.R., Tamás, L., Hsam, S.L.K., Zeller, F.J., Békés, F., Bedõ, Z. 2003. Bánkuti 1201 — an old Hungarian wheat variety with special storage protein composition. Theor. Appl. Genet. 107: 697–704.CrossRefGoogle Scholar
  13. Kim, W., Johnson, J.W., Graybosch, R.A., Gaines, C.S. 2003. Physicochemical properties and end-use quality of wheat starch as a function of waxy protein alleles. J. Cereal Sci. 37: 195–204.CrossRefGoogle Scholar
  14. Kiribuchi-Otobe, C., Nagamine, T., Yanagisawa, T., Ohnishi, M., Yamaguchi, I. 1997. Production of hexaploid wheats with waxy endosperm character. Cereal Chem. 74: 72–74.CrossRefGoogle Scholar
  15. Kiribuchi-Otobe, C., Yanagisawa, T., Yamaguchi, I., Yoshida, H. 1998. Wheat mutant with waxy starch showing stable hot paste viscosity. Cereal Chem. 75: 671–672.CrossRefGoogle Scholar
  16. Lafiandra, C., Kasarda, D.D. 1985. One and two-dimensional (two-pH) polyacrylamide gel electrophoresis in a single gel: separation of wheat proteins. Cereal Chem. 62: 314–319.Google Scholar
  17. McPherson, A.E., Jane, J. 1999. Comparison of waxy potato with other root and tuber starches. Carbohydrate Polymers 40: 57–70.CrossRefGoogle Scholar
  18. Nakamura, T., Yamamori, M., Hirano, H., Hidaka, S. 1993. Identification of three Wx proteins in wheat (Triticum aestivum L.). Biochem. Genet. 31: 75–86.CrossRefGoogle Scholar
  19. Nakamura, T., Yamamori, M., Hirano, H., Hidaka, S., Nagamine, T. 1995. Production of waxy (amylose-free) wheats. Mol. Gen. Genet. 248: 253–259.CrossRefGoogle Scholar
  20. Naranjo, T., Roca, A., Goicoecha, P.G., Giraldez, R. 1987. Arm homoeology of wheat and rye chromosomes. Genome 29: 873–882.CrossRefGoogle Scholar
  21. Payne, P.I., Law, C.N., Mudd, E.E. 1980. Control of homoeologous group 1 chromosomes of the high-molecular-weight subunits, a major protein of wheat endosperm. Theor. Appl. Genet. 58: 113–120.CrossRefGoogle Scholar
  22. Payne, P.I., Corfield, K.G., Blackman, A.J. 1979. Identification of a high-molecular-weight subunit of glutenin whose presence correlates with breadmaking quality in wheats of related pedigree. Theor. Appl. Genet. 55: 153–159.CrossRefGoogle Scholar
  23. Payne, P.I., Holt, L.M., Worland, A.J., Law, C.N. 1982. Structural and genetic studies on the high-molecular-weight subunits of wheat glutenin. Part 3: telocentric mapping of the subunit genes on the long arm of the homoeologous group 1 chromosomes. Theor. Appl. Genet. 63: 129–138.CrossRefGoogle Scholar
  24. Preiss, J. 1991. Biology and molecular biology of starch synthesis and its regulation. Plant Mol. Cell. Biol. 7: 59–114.Google Scholar
  25. Radovanovic, N., Cloutier, S., Brown, D., Humphreys, D.G., Lukow, O.M. 2002. Genetic variance for gluten strength contributed by high molecular weight glutenins proteins. Cereal Chem. 79: 843–849.CrossRefGoogle Scholar
  26. Ragupathy, R., Naeem, H.A., Reimer, E., Lukow, O.M., Sapirstein, H.D., Cloutier, S. 2008. Evolutionary origin of the segmental duplication encompassing the wheat GLU-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular weight glutenin subunit. Theor. Appl. Genet. 116: 283–296.CrossRefGoogle Scholar
  27. RodrÍguez-Quijano, M., Nieto-Taladriz, M.T., Carrillo, J.M. 1998. Polymorphism of waxy proteins in Iberian hexaploid wheats. Plant Breed. 117: 341–344.CrossRefGoogle Scholar
  28. Sasaki, T., Yasui, T., Matsuki, J. 2000. Effect of amylose content on gelatinization, retrogradation and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds. Cereal Chem. 77: 58–63.CrossRefGoogle Scholar
  29. Saghai-Maroof, M., Soliman, K.M., Jorgensen, R.A., Allard, R.W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Nat. Academy of Sci. USA 81: 8014–8018.CrossRefGoogle Scholar
  30. Shewry, P.R., Halford, N.G., Tatham, A.S. 1992. High-molecular-weight subunits of wheat glutenin. Plant Mol. Cell. Biology 15: 105–120.Google Scholar
  31. Singh, N.K., Shepherd, K.W., Cornish, G.B. 1991. Asimplified SDS-PAGE procedure for separating LMW subunits of glutenin J. Cereal Sci. 14: 203–208.CrossRefGoogle Scholar
  32. Song, Y., Jane, J. 2000. Characterization of barley starches of waxy, normal and high amylose varieties. Carbohydrate Polymers 41: 365–377.CrossRefGoogle Scholar
  33. Yasui, T., Sasaki, T., Matsuki, J. 1999. Milling and flour pasting properties of waxy endosperm mutant lines of bread wheat (Triticum aestivum L.). J. Sci.Food Agr. 79: 687–692.CrossRefGoogle Scholar
  34. Yasui, T., Sasaki, T., Matsuki, J., Yamamori, M. 1997. Waxy endosperm mutants of bread wheat (Triticum aestivum L.) and their starch properties. 1997. Breeding Science 47: 161–163.Google Scholar
  35. Yoo, S.G., Jane, J. 2002. Structural and physical characteristics of waxy and other wheat starches. Carbohydrate Polymers 49: 297–305.CrossRefGoogle Scholar
  36. Zen, M., Morris, C.F., Batey, I.L., Wrigley, C.W. 1997. Sources of variation for starch gelatinization, pasting, and gelation properties in wheat. Cereal Chem. 74: 3–71.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

Authors and Affiliations

  • R. Lucas
    • 1
  • M. Rodríguez-Quijano
    • 1
    Email author
  • J. F. Vázquez
    • 1
  • J. M. Carrillo
    • 1
  1. 1.Unidad de Genética, Departamento de BiotecnologíaUniversidad PolitécnicaMadridSpain

Personalised recommendations