Advertisement

Cereal Research Communications

, Volume 37, Issue 4, pp 499–511 | Cite as

Genetic analysis of grain yield and leaf chlorophyll content in common wheat

  • K. Zhang
  • Y. Zhang
  • G. Chen
  • J. TianEmail author
Open Access
Physiology

Abstract

Chlorophyll content is positively correlated with photosynthetic rate. However, little is known about the genetic correlation between grain yield and chlorophyll content in the same wheat mapping population. The primary goal of the study was to detect the genetic basis of grain yield and chlorophyll content and their possible roles in the genetic improvement of grain yield in wheat. Here, quantitative trait loci (QTLs) for grain yield and chlorophyll content were studied using a set of 168 doubled haploid (DH) lines derived from a cross between two elite Chinese wheat cultivars, Huapei 3×Yumai 57. The DH population and parents were evaluated for grain yield and chlorophyll content in three environments. A total of 11 additive QTLs and 6 pairs of epistatic QTLs were detected for grain yield and chlorophyll content. Loci, such as Xcfd53, Xwmc718, and Xwmc215 on chromosomes (e.g. 2D, 4A, and 5D) simultaneously controling grain yield and chlorophyll content, showed tight linkages or pleiotropisms. Three novel major QTLs, qGY5D, qChla5D, and qChlb5D, closely linked with the PCR marker Xwmc215 on chromosome 5D, accounted for 10.32%, 12.95%, and 23.29% of the phenotypic variance, respectively. The favorable alleles came from Yumai 57.

Keywords

chlorophyll content grain yield marker-assisted selection quantitative trait loci Triticum aestivum L. 

References

  1. Börner, A., Schumann, E., Furste, A., Coster, H., Leithold, B., Röder, M.S., Weber, W.E. 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 105:921–936.CrossRefGoogle Scholar
  2. Cao, W.D., Jia, J.Z., Jin, J.Y. 2004. Identification and interaction analysis of QTL for chlorophyll content in wheat seedlings. Plant Nutr. Ferti. Sci. 10:473–478.Google Scholar
  3. Churchill, G.A., Doerge, R.W. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138:963–971.PubMedPubMedCentralGoogle Scholar
  4. Fang, P., Yu, X.M., Zhu, R.Q., Wu, P. 2004. QTLs for rice leaf chlorophyll content under low N stress. Pedosphere 14:145–150.Google Scholar
  5. Groos, C., Robert, N., Bervas, E., Charmet, G. 2003. Genetic analysis of grain protein content, grain yield and thousand-kernel weight in bread wheat. Theor. Appl. Genet. 106:1032–1040.CrossRefGoogle Scholar
  6. Guo, C.Q., Bai, Z.A., Liao, P.A., Jin, W.K. 2004. New high quality and yield wheat variety Yumai 57. China Seed Industry, 4:54.Google Scholar
  7. Hai, Y., Kang, M.H. 2007. Breeding of Huapei 3 new wheat variety with high yield and early maturing. Henan Agric. Sci. 5:36–37.Google Scholar
  8. Hanocq, E., Laperche, A., Jaminon, O., Lainé, A.L., LeGouis, J. 2007. Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor. Appl. Genet. 114:569–584CrossRefGoogle Scholar
  9. Huang, X.Q., Kempf, H., Ganal, M.W., Röder, M.S. 2004. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor. Appl. Genet. 109:933–943.CrossRefGoogle Scholar
  10. Huang, X.Q., Chloutier, S., LyCad, L., Radovanovic, N., Humphreys, D.G., Noll, J.S., Somers, D.J., Brown, P.D. 2006. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor. Appl. Genet. 113:753–766.CrossRefGoogle Scholar
  11. Knapp, S.J., Stroup, W.W., Ross, W.M. 1985. Exact convidence intervals for heritability on a progeny mean basis. Crop Sci. 25:192–194.CrossRefGoogle Scholar
  12. Kuchel, H., Williams, K., Langridge, P., Eagles, H.A., Jefferies, S.P. 2007. Genetic dissection of grain yield in bread wheat. II. QTL-by-environment interaction. Theor. Appl. Genet. 115:1015–1027.CrossRefGoogle Scholar
  13. Li, S.S., Jia, J.Z., Wei, X.Y., Zhang, X.C., Li, L.Z., Chen, H.M., Fan, Y.D., Sun, H.Y., Zhao, X.H., Lei, T.D., Xu, Y.F., Jiang, F.S., Wang, H.G., Li, L.H. 2007. An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol. Breeding 20:167–178.CrossRefGoogle Scholar
  14. Marza, F., Bai, G.H., Carver, B.F., Zhou, W.C. 2006. Quantitative trait loci for yield and related traits in the wheat population Nin7840 × Clark. Theor. Appl. Genet. 112:688–698.CrossRefGoogle Scholar
  15. McCartney, C.A., Somers, D.J., Humphreys, D.G., Lukow, O., Ames, N., Noll, J., Cloutier, S., McCallum, B.D. 2005. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross ‘RL4452’ × ‘AC Domain’. Genome 48:870–88CrossRefGoogle Scholar
  16. Motzo, R., Giunta, F. 2007. The effect of breeding on the phenology of Italian durum wheats: From landraces to modern cultivars. Eur. J. Agron. 26:462–470.CrossRefGoogle Scholar
  17. Narasimhamoorthy, B., Gill, B.S., Fritz, A.K., Nelson, J.C., Brown-Guedira, G.L. 2006. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor. Appl. Genet. 112:787–796.CrossRefGoogle Scholar
  18. Porra, R.J., Thompson, W.A., Kriedemann, P.E. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975:384–394.CrossRefGoogle Scholar
  19. Quarrie, S.A., Pekic Quarrie, S., Radosevic, R., Rancic, D., Kaminska, A., Barnes, J.D., Leverington, M., Ceoloni, C., Dodig, D. 2006. Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J. Experimental Botany 57: 2627–2637.CrossRefGoogle Scholar
  20. Rebetzke, G.J., Ellis, M.H., Bonnett, D.G., Richards, R.A. 2007. Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 114:1173–1183.CrossRefGoogle Scholar
  21. Rebetzke, G.J., Richards, R.A., Fischer, V.M., Mickelson, B.J. 1999. Breeding long coleoptile, reduced height wheats. Euphytica 106:159–168.CrossRefGoogle Scholar
  22. Shen, B., Zhuang, J.Y., Zhang, K.Q., Dai, W.M., Lu, Y., Fu, L.Q., Ding, J.M., Zheng, K.L. 2007. QTL mapping of chlorophyll content in rice. Agric. Sci. Sinic. 6:17–24.Google Scholar
  23. Thomas, H., Smart, C.M. 1993. Crops that stay green. Annals Appl. Biol. 123:193–203.CrossRefGoogle Scholar
  24. Thomas, J.A., Jeffrey, A.C., Atsuko, K., David, M.K. 2005. Regulating the proton budget of higher plant photosynthesis. Proc. Natl. Acad. Sci. USA 102:9709–9713.CrossRefGoogle Scholar
  25. Wang, B., Lan, T., Wu, W.R., Li, W.M. 2003. Mapping of QTLs controlling chlorophyll content in rice (Oryza sativa L.). Acta Genet. Sin. 30:1127–1132.PubMedGoogle Scholar
  26. Wang, D.L., Zhu, J., Li, Z.K., Paterson, A.H. 1999. Mapping QTLs with epistatic effects and QTL× environment interactions by mixed linear model approaches. Theor. Appl. Genet. 99:1255–1264.CrossRefGoogle Scholar
  27. Wang, F.H., Wang, G.X., Lia, X.Y., Huang, J.L., Zheng, J.K. 2008. Heredity, physiology and mapping of a chlorophyll content gene of rice (Oryza sativa L.). J. Plant Physiol. 165:324–330.CrossRefGoogle Scholar
  28. Yang, D.L., Jing, R.L., Chang, X.P., Li, W. 2007. Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). J. Integ. Plant Biol. 49:646–654.CrossRefGoogle Scholar
  29. Yang, G., Li, S., Feng, L., Kong, J., Li, H., Li, Y. 2006. Analysis of QTL underlying the traits relative to the chlorophyll content of the flag leaf in rice. J. Wuhan Univ. 52:751–756.Google Scholar
  30. Yang, J., Zhu, J. 2005. Methods for predicting superior genotypes under multiple environments based on QTL effects. Theor. Appl. Genet. 110:1268–1274.CrossRefGoogle Scholar
  31. Zhang, K.P., Tian, J.C., Zhao, L., Liu, B., Chen, G.F. 2009. Detection of quantitative trait loci for heading date based on the doubled haploid progeny of two elite Chinese wheat cultivars. Genetica 135:257–265.CrossRefGoogle Scholar
  32. Zhang, Z.L. 1990. Guide to plant physiology experiments. Higher Education Press, Beijing.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.State Key Laboratory of Crop BiologyShandong Agricultural UniversityTai’anChina
  2. 2.Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
  3. 3.Linyi Academy of Agricultural SciencesLinyiChina
  4. 4.Department of AgricultureDezhou UniversityDezhouChina

Personalised recommendations