Analysis of cpSSR in triticale plants obtained by in vitro androgenesis

Abstract

In vitro androgenesis allows haploid and double haploid homozygous plants to be obtained. However, in cereals, non-viable albino plants are often produced. This limits the use of this technique both in basic studies and in plant genetic improvement programs. We have analyzed eight microsatellites of the chloroplast genome (cpSSR) in a collection of 46 double haploid green lines derived from the intervarietal hybrid ‘Torote’ × ‘Presto’, and 49 haploid albino plants all obtained from the double haploid line ‘ATOPE-41’, in order to know the stability of this sequences after the androgenetic process. The green plants showed no variations at the analyzed loci, while two of the albino plants differed at two loci: WCt2 and WCt9. These variations notably affected the microsatellite nucleotide sequences as well as the sequences surrounding them. The changes observed consisted of insertions, deletions and nucleotide substitutions, with transition and transversion types equally common. The latter albino plants showed several alleles at the polymorphic loci, indicating the existence of heteroplasmy.

References

  1. Abe, T., Li, N., Togashi, A., Sasahara, T. 2002. Large deletions in chloroplast DNA of rice calli after long-term culture. J. Plant Physiol. 159: 917–923.

    CAS  Article  Google Scholar 

  2. Caredda, S., Clément, C. 1999. Androgenesis and albinism in Poaceae: influence of genotype and carbohydrates. In: Clément, C., Pacini, E., Andran, J.C. (eds), Anther and Pollen: From Biology to Biotechnology. Springer Verlag, Berlin, Heidelberg, Tokyo, pp. 211, 228.

    Google Scholar 

  3. Caredda, S., Devaux, P., Sangwan, R.S., Clément, C. 1999. Differential development of plastids during microspore embryogenesis in barley. Protoplasma. 208:248–256.

    Article  Google Scholar 

  4. Caredda, S., Devaux, P., Sangwan, R.S., Proult, I., Clément, C. 2004. Plastid ultrastructure and DNA related to albinism in androgenetic embryos of various barley (Hordeum vulgare) cultivars. Plant Cell, Tiss. Organ Cult. 76:35–43.

    CAS  Article  Google Scholar 

  5. Caredda, S., Doncoeur, C., Devaux, P., Sangwan, R.S., Clément, C. 2000. Plastid differentiation during androgenesis in albino and non-albino producing cultivars of barley (Hordeum vulgare L.). Sex Plant Reprod. 13:95–104.

    CAS  Article  Google Scholar 

  6. Chen, X., Cho, Y.G., McCouch, S.R. 2002. Sequence divergence of rice microsatellites in Oryza and other plant species. Mol. Genet. Genomics 268:331–343.

    CAS  Article  Google Scholar 

  7. Day, A., Ellis, T.H.N. 1984. Chloroplast DNA deletions associated with wheat plants regenerated from pollen: Possible basis for maternal inheritance of chloroplasts. Cell 39:359–368.

    CAS  Article  Google Scholar 

  8. Dunford, R., Walden, R.M. 1991. Plastid genome structure and plastid-related transcript levels in albino barley plants derived from anther culture. Curr. Genet. 20:339–347.

    CAS  Article  Google Scholar 

  9. González, J.M., Hernández, I., Jouve, N. 1997. Analysis of anther culture response in hexaploid triticale. Plant Breeding 116:302–304.

    Article  Google Scholar 

  10. González, J.M., Jouve, N. 2000. Improvement of anther culture media for haploid production in triticale. Cereal Res. Commun. 28:65–72.

    Google Scholar 

  11. González, J.M., Muñiz, L.M., Jouve, N. 2005. Mapping of Qtls for androgenetic response based on a molecular genetic map of × Triticosecale Wittmack. Genome 48:999–1009.

    Article  Google Scholar 

  12. Harada, T., Sato, T., Asaka, D., Matsukawa, I. 1991. Large-scale deletion of rice plastid DNA in anther culture. Theor. Appl. Genet. 81:157–161.

    CAS  Article  Google Scholar 

  13. Horlow, C., Raquin, C. 1998. A critical analysis of existing haploidization techniques. In: Chupeau, Caboche, Henri (eds), Androgenesis and Haploid Plants. INRA/Springer Verlag, pp. 7–23.

  14. Ishii, T., Mori, N., Ogihara, Y. 2001. Evaluation of allelic diversity at chloroplast microsatellite loci among common wheat and its ancestral species. Theor. Appl. Genet. 103:896–904.

    CAS  Article  Google Scholar 

  15. Jain, S.M. 2001. Tissue culture-derived variation in crop improvement. Euphytica 118:153–166.

    CAS  Article  Google Scholar 

  16. Jacobsson, M., Säll, T., Lind-Halldén, C., Halldén, C. 2007. Evolution of chloroplast mononucleotide microsatellites in Arabidopsis thaliana. Theor. Appl. Genet. 114:223–235.

    Article  Google Scholar 

  17. Larkin, P.J., Scowcroft, W.R. 1981. Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60:197–214.

    CAS  Article  Google Scholar 

  18. Larsen, E.T., Tuvesson, I.K.D., Andersen, S.B. 1991. Nuclear genes affecting percentage of green plants in barley (Hordeum vulgare L.) anther culture. Theor. Appl. Genet. 82:417–420.

    CAS  Article  Google Scholar 

  19. Liu, N.T., Jane, W.N., Tsay, H.S., Wu, H., Chang, W.C., Lin, C.S. 2007. Chloroplast genome aberration in micropropagation-derived albino Bambusa edulis mutants, ab1 and ab2. Plant Cell, Tiss. Organ Cult. 88:147–156.

    CAS  Article  Google Scholar 

  20. Matsuoka, Y., Yamazaki, Y., Ogihara, Y., Tsunewaki, K. 2002. Whole chloroplast genome comparison of rice, maize and wheat: implications for chloroplast gene diversification and phylogeny of cereals. Mol. Biol. Evo. 19:2084–2091.

    CAS  Article  Google Scholar 

  21. Matsuoka, Y., Mori, N., Kawahara, T. 2005. Genealogical use of chloroplast DNA variation for intraspecific studies of Aegilops tauschii Coss. Theor. Appl. Genet. 111:265–271.

    CAS  Article  Google Scholar 

  22. Molina-Cano, J.L., Russell, J.R., Moralejo, M.A., Escacena, J.L., Arias, G., Powell, W. 2005. Chloroplast DNA microsatellite analysis supports a polyphyletic origin for barley. Theor. Appl. Genet. 110:613–619.

    CAS  Article  Google Scholar 

  23. Mogensen, H.L. 1996. The hows and whys of cytoplasmic inheritance in seed plants. Am. J. Bot. 83:383–404.

    Article  Google Scholar 

  24. Moxon, E.R., Wills, C. 1999. DNA microsatellites: agents of evolution? Sci. Am. 280:94–99.

    CAS  Article  Google Scholar 

  25. Nishikawa, T., Vaughan, D.A., Kadowaki, K. 2005. Phylogenetic analysis of Oryza species, based on simple sequence repeats and their flanking nucleotide sequences from the mitochrondrial and chloroplast genomes. Theor. Appl. Genet. 110:696–705.

    CAS  Article  Google Scholar 

  26. Ogihara, Y., Isono, K., Kojima, T., Endo, A., Hanaoka, M., Shiina, T., Terachi, T., Utsugi, S., Murata, M., Mori, N., Takumi, S., Ikeo, K., Gojobori, T., Murai, R., Murai, K., Matsuoka, Y., Ohnishi, Y., Tajiri, H., Tsunewaki, K. 2000. Chinese Spring wheat (Triticum aestivum L.) chloroplast genome: Complete sequence and contig clones. Plant Mol. Biol. Rep. 18:243–253.

    CAS  Article  Google Scholar 

  27. Ogihara, Y., Ohsawa, T. 2002. Molecular analysis of the complete set of length mutation found in the plastomes of Triticum-Aegilops species. Genome 45:956–962.

    CAS  Article  Google Scholar 

  28. Powell, W., Morgante, M. 1995. Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome. Curr. Biol. 5:1023–1029.

    CAS  Article  Google Scholar 

  29. Provan, J., Powell, W., Hollingsworth, P.M. 2001. Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends in Ecology & Evolution 16:142–147.

    CAS  Article  Google Scholar 

  30. Rakoczy-Trojanowska, M., Bolibok, H. 2004. Characteristics and a comparison of three classes of microsatellite-based markers and their application in plants. Cellular & Molecular Biology Letters. 9:221–238.

    CAS  Google Scholar 

  31. Takeuchi, R., Kimura, S., Saetome, A., Sakaguchi, K. 2007. Biochemical properties of a plastidial DNA polymerase of rice. Plant Mol. Biol. 64:601–611.

    CAS  Article  Google Scholar 

  32. Tuvesson, I.K.D., Pedersen, S., Andersen, S.B. 1989. Nuclear genes affecting albinism in wheat (Triticum aestivum L.) anther culture. Theor. Appl. Genet. 78:879–883.

    CAS  Article  Google Scholar 

  33. Varshney, R.K., Graner, A., Sorrells, M.E. 2005. Genic microsatellite markers in plants: Features and applications. TRENDS in Biotechnology 23:48–55.

    CAS  Article  Google Scholar 

  34. Zhou, H., Konzak, C.F. 1992. Genetic control of green plant regeneration from anther culture of wheat. Genome 35: 957–960.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. M. González.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

González, J.M., Rubio, P., López, A. et al. Analysis of cpSSR in triticale plants obtained by in vitro androgenesis. CEREAL RESEARCH COMMUNICATIONS 37, 345–352 (2009). https://doi.org/10.1556/CRC.37.2009.3.3

Download citation

Keywords

  • albino plants
  • Triticale
  • cpSSR
  • double haploids
  • microsatellites
  • androgenesis