Advertisement

Cereal Research Communications

, Volume 37, Issue 2, pp 217–225 | Cite as

A powdery mildew resistant line with introgression of Agropyron elongatum chromatin

  • J. Ji
  • J. Wang
  • Q. Zheng
  • J. M. LiEmail author
  • Z. G. Wang
  • X. Q. Zhang
  • A. M. ZhangEmail author
Pathology

Abstract

The introgressed alien chromosome in BC10F5 progeny of the cross between common wheat (Triticum aestivum L.) and Agropyron elongatum (Host) (2n=7X=70) [syn. Thinopyrum ponticum (Popd.) Barkworth & D.R. Dewey] was determined by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), using genomic DNA from A. elongatum as a probe in GISH and repeat sequence pAs1, pSc119.2 as probes in FISH, and molecular marker techniques. The results revealed that the line was a chromosome additional line in which a pair of the chromosomes added was composed of chromosome segment from E-genome of A. elongatum and short arm of 5B of common wheat cultivar Gao 38 identified by E-genome-specific primers. Powdery mildew test showed the line was highly resistant to powdery mildew as its A. elongatum parent and this indicated that the gene of resistant to powdery mildew might come from A. elongatum and localized on E-genome.

Keywords

Agropyron elongatum GISH FISH E-genome powdery mildew 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, R.B. 1999. Yield of wheat in the United Kingdom: Recent advances and prospects. Crop Sci. 39:1604–1610.CrossRefGoogle Scholar
  2. Bhardwaj, S.C., Prashar, M., Kumar, S., Jain, S.K., Datta, D. 2005. Lr19 resistance in wheat becomes susceptible to Puccinia triticina in India. Plant Dis. 89:1360.CrossRefGoogle Scholar
  3. Blanco, A., Cenci, A., Simeone, R., Gadaleta, A., Pignone, D., Galasso, I. 2002. The cytogenetics and molecular characteristics of a translocated chromosome 1AS/1AL-1DL with a Glu-D1 locus in durum wheat. Cell Mol. Biol. Lett. 7:559–567.PubMedGoogle Scholar
  4. Chen, S.Y., Xia, G.M., Quan, T., Xia, F., Chen, H.M. 2004. Studies on the salt-tolerance of F 3–F 6 hybrid lines originated from somatic hybridization between common wheat and Thinopyrum ponticum. Plant Sci. 167:773–779.CrossRefGoogle Scholar
  5. Chen, P.D., Qi, L.L., Zhang, S.Z., Liu, D.J. 1995. Development and molecular cytogenetic analysis of wheat 6VS/6AL translocation lines specifying resistance to podwery mildew. Theor. Appl. Genet. 91:1125–1128.CrossRefGoogle Scholar
  6. Chen, Y.P., Wang, H.Z., Cao, A.Z., Wang, C.M., Chen, P.D. 2006. Cloning of a resistance gene analog from wheat and development of a codominant PCR marker for Pm21. J. Intergrat. Plant Biol. 48:715–721.CrossRefGoogle Scholar
  7. Dhaliwal, H.S., Garg, M., Sing, H., Chhuneja, P., Kaur, H. 2002. Transfer of HMW-glutenin subunits from wild wheats into Triticum durum and improvement of quality. Cereal Res. Comm. 30:173–180.Google Scholar
  8. Doyle, J.J., Doyle, J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12:13–15.Google Scholar
  9. Feng, D.S., Chen, F.G., Zhao, S.Y., Xia, G.M. 2004. High-molecular-weight glutenin subunit genes in decaploid Agropyron elongatum. Acta Bot. Sin. 46:489–496.Google Scholar
  10. Forsström, P.O., Merker, A., Schwarzacher, T. 2002. Characterization of mildew resistant wheat-rye substitution lines and identification of an inverted chromosome by fluorescent in situ hybridization. Heredity 88:349–355.CrossRefGoogle Scholar
  11. Gill, B.S. 1987. Chromosome banding methods standard chromosome nomenclature and applications in cytogenetic analysis. In: Heyne, E.G. (ed.), Wheat and Wheat Improvement, 2nd edn. American Society of Agronomy, Madison, pp. 243–254.Google Scholar
  12. Hsam, S.L.K., Lapochkina, I.F., Zeller, F.J. 2003. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat- Aegilops speltoides translocation line. Euphytica 133:367–370.CrossRefGoogle Scholar
  13. Ko, J.M., Seo, B.B., Suh, D.Y., Do, G.S., Park, D.S. 2002. Production of new wheat line possessing the 1BL.1RS wheat-rye translocation derived from Korean rye cultivar Paldanghomil. Theor. Appl. Genet. 104:171–176.CrossRefGoogle Scholar
  14. Koebner, R.M.D., Shepnerd, K.W., Appels, R. 1986. Controlled introgression to wheat of genes from rye chromosome arm 1RS by induction of allosyndesis: Characterization of recombinants. Theor. Appl. Genet. 104:171–176.Google Scholar
  15. Li, W.L., Chen, P.D., Qi, L.L., Liu, D.J. 1995. Isolation, characterization and application of a species-specific repeated sequence from Haynaldia villosa. Theor. Appl. Genet. 90:526–533.CrossRefGoogle Scholar
  16. Lin, X.H., Wang, L.M., Li, X.F., Lu, W.H., Zhao, F.T., Li, W.C., Gao, J.R., Wang, H.G. 2005. Identification of octoploid trititrigia and alien disomic addition line with powdery mildew resistance. Acta Agronomica Sinica 31:1035–1040.Google Scholar
  17. Liu, S.B., Wang, H.G. 2002. Identification of cytology and molecular biology about wheat- Thinopyrum intermedium (2n=42) addition line with resistance to powdery mildew. Chinese Sci. Bull. 47:1500–1503.CrossRefGoogle Scholar
  18. Mohler, V., Hsam, S.L.K., Zeller, F.J., Wenzel, G. 2001. An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breed. 120:448–450.CrossRefGoogle Scholar
  19. Mohler, V., Zeller, F.J., Wenzel, G., Hsam, S.L.K. 2005. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 9. Gene MiZec1 from Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica 142:161–167.CrossRefGoogle Scholar
  20. Mukai, Y., Nakahara, Y., Yamamoto, M. 1993. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494.CrossRefGoogle Scholar
  21. Nagy, E.D., Molnár-Láng, M. 2000. Frequency of pairing between the 1B/1R translocation and its respective homologues in a wheat-rye hybrid as revealed by GISH. Cereal Res. Comm. 28:41–48.Google Scholar
  22. Nagy, E.D., Molnár-Láng, M., Linc, G., Láng, L. 2002. Idenfication of wheat-barely translocations by sequential GISH and two-colour FISH in combination with the use of genetically mapped barely SSR markers. Genome 45(6):1238–1247.CrossRefGoogle Scholar
  23. Oliver, R.E., Cai, X., Xu, S.S., Chen, X., Stack, R.W. 2005. Wheat-alien species derivatives: A novel source of resistance to Fusarium head blight in wheat. Crop Sci. 45:1353–1360.CrossRefGoogle Scholar
  24. Rader, S.M., Abbo, S., Purdie, K.A., King, I.P., Miller, T.E. 1994. Direct labeling of plant chromosomes by rapid in situ hybridization. Trend Genet. 10:265–266.CrossRefGoogle Scholar
  25. Wang, J., Feng, N.X., Xia, G.M. 2005. Agropyron elongatum chromatin localization on the wheat chromosomes in an introgreesion line. Planta 221:277–286.CrossRefGoogle Scholar
  26. Wang, R. R-C., Wei, J. Z. 1995. Variations of two repeative DNA sequences in several triticeae genomes revealed by polymer chain reaction and sequencing. Genome 38:1221–1229.CrossRefGoogle Scholar
  27. Wang, Z.G., An, T.G., Li, J.M., Molnár-Láng, M., Ji, J., Zhong, G. C., Mu, S. M. 2004. Fluorescent in situ hybridization analysis of rye chromatin in the background of “Xiaoyan No.6”. Acta Bot Sin. 46(4): 436–442.Google Scholar
  28. Wei, J. Z., Wang, R. R-C. 1995. Genome and species specific markers and genome relationships of diploid perennial species in Triticease based on RAPD analysis. Genome 38:1230–1236.CrossRefGoogle Scholar
  29. Yang, G.H., Li, B., Liu, J.Z., Ying, J., Mu, S.M., Zhou, H.P., Li, Z.S. 2002. Identification of blue grained wheat and its irradiation-mutated offsprings by genomic in situ hybridization (GISH). Acta Genet. Sin. 29(3):255–259.PubMedGoogle Scholar
  30. You, M.S., Liu, B.Y., Tian, Z.H., Tang, Z.H., Liu, S.B., Liu, G.T. 2003. Development of specific SSR marker for E e -genome of Thinopyrum sp. by using wheat microstatellites. J. Agri. Biotech. 11:577–581.Google Scholar
  31. You, M.S., Li, B.Y., Tang, Z.H., Liu, S.B., Song, J.M., Mao, S.F., Liu, G.T. 2002. Establishment of E-genome-specific RAPD and SCAR markers for Thinopyrum. J. China Agri. Univ. 7(5):1–6.Google Scholar
  32. Zhang, H.B., Dvořák, J. 1990. Isolation of repeated DNA sequences from Lophopyrum elongatum for detection of Lophopymm chromatin in wheat genomes. Genome 33:283–293.CrossRefGoogle Scholar
  33. Zhang, X.Y., Dong, Y.S., Li, P., Wang, R. R-C. 1998. Distribution of E- and St-Specific RAPD fragments in few genomes of Triticeae. Acta Genet. Sin. 25:131–141.PubMedGoogle Scholar
  34. Zhao, T.J., Quan, T.Y., Xia, G.M., Chen, H.M. 2003. Glutenin and SDS sedimentation analysis of the F 5 somatic hybrids between Triticum aestivum and Agropyron elongatum. J. Shandong Univ. 38:112–116.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  1. 1.Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of Sciences, ShijiazhuangHebeiChina
  2. 2.The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina

Personalised recommendations