Advertisement

Cereal Research Communications

, Volume 37, Issue 2, pp 209–215 | Cite as

Identification, gene postulation and molecular tagging of a stripe rust resistance gene in synthetic wheat CI142

  • L. M. Wang
  • Z. Y. ZhangEmail author
  • H. J. Liu
  • S. C. Xu
  • M. Z. He
  • H. X. Liu
  • O. Veisz
  • Z. Y. Xin
Open Access
Physiology

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most serious diseases of wheat (Triticum aestivum L.) worldwide. Of 94 Triticum durum/Aegilops tauschii synthetic wheat accessions tested, CI142 (Garza/Boy//Ae. squarrosa 271) was found to be resistant to 6 Chinese PST races. The resistance to stripe rust in CI142 was proven to be controlled by a single dominant gene, tentatively designated YrC142. Gene postulation showed that the pathogenic specificity of CI142 is different from 21 other lines possessing known resistance genes, such as Yr10, Yr15, Yr24, and Yr26, located on chromosome 1B. Bulked segregant analysis (BSA) and F2 segregation analysis of the CI142/Mingxian 169 cross were used to analyse the SSR markers linked to YrC142. Five SSR markers were found to be closely associated with YrC142 in the order Xwmc419-YrC142-Xgwm273, Xbarc187-Xgwm18-Xwmc626, in which the relative genetic distances of these SSR loci to the gene YrC142 were 5.4, 0.8, 0.8, 1.0, and 2.4 cM, respectively. Two SSR markers (Xgwm273−162 and Xgwm18−168) distinguished YrC142 from Yr10, Yr15, Yr24, and Yr26, suggesting that these 2 SSR markers may be used as diagnostic ones for the gene in a wheat breeding program against stripe rust. Based on these findings, YrC142 is most likely a new gene or a new allele at the Yr26 locus, which provides an opportunity to diversify stripe rust-resistant resources for wheat breeding programs.

Keywords

Triticum durum/Aegilops tauschii synthetic wheat stripe rust resistance gene gene postulation SSR marker 

References

  1. Bariana, H.S., McIntosh, R.A. 1993. Cytogenetic studies in wheat XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36:476–482.CrossRefGoogle Scholar
  2. Heun, M., Fischbeck, G. 1987. Identification of wheat powdery mildew resistance genes by analyzing host-pathogen interactions. Plant Breed. 98:124–129.CrossRefGoogle Scholar
  3. Li, G.Q., Li, Z.F., Yang, W.Y., Zhang, Y., He, Z.H., Xu, S.C., Singh, R.P., Qu, Y.Y., Xia, X.C. 2006. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor. Appl. Genet. 112:1434–1440.CrossRefGoogle Scholar
  4. Lincoln, S., Daly, M., Lander, E. 1992. Constructing genetic maps with Mapmaker/EXP3.0. Whitehead Institute Tech Rep, 3rd ed. Whitehead Institute, CambridgeGoogle Scholar
  5. Ma, J.X., Zhou, R.H., Dong, Y.S., Wang, L.F., Wang, X.M., Jia, J.Z. 2001. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica 120:219–226.CrossRefGoogle Scholar
  6. McIntosh, R.A., Hart, G.E., Devos, K.M. 1998. Catalogue of gene symbols for wheat. In: Slinkard, A.E. (ed), Proceedings of Ninth International Wheat Genetics Symposium, Vol. 3. University Extension Press, University of Saskatchewan, Saskatoon, pp. 139–143.Google Scholar
  7. McIntosh, R.A., Yamazaki, Y., Devos, K.M., Dubcovsky, J., Rogers, W.J., Appels, R. 2003. Catalogue of gene symbols for wheat. In: Pogna, N.E., Romano, N., Pogna, E.A., Galterio, G. (eds), Proceedings of the Tenth International Wheat Genetics Symposium, Vol. 4. Instituto Sperimentale per la Cerealcoltura, Rome, p. 24.Google Scholar
  8. McIntosh, R.A., Devos, K.M., Dubcovsky, J., Rogers, W.J., Morris, C.F., Appels, R., Anderson, O.D. 2007. Catalogue of gene symbols for wheat: 2007 supplement. http://www.wheat.pw.usda.gov/ggpages/macgene/supplement2007.html
  9. Mujeeb-Kazi, A., Rosas, V., Roland, S. 1996. Conservation of the genetic variation of Triticum tauschii (Cross.) Schmalh. (Aegilops squarrosa L.) in synthetic hexaploid wheats (T. turgidum L.× T. tauschii, 2n=6x=42, AABBDD) and its potential utilization for wheat improvement. Genet Res. Crop. Evol. 43:129–134.CrossRefGoogle Scholar
  10. Peng, J.H., Fahima, T., Röder, M.S., Huang, Q.Y., Dahan, A., Li, Y.C., Grama, A., Nevo, E. 2000. High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica 109:199–210.CrossRefGoogle Scholar
  11. Pestsova, E., Ganal, M.W., Röder, M.S. 2000. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697.CrossRefGoogle Scholar
  12. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149:2007–2023.PubMedPubMedCentralGoogle Scholar
  13. Shao, Y.T., Niu, Y.C., Zhu, L.H., Zhai, W.X., Xu, S.C., Wu, L.R. 2001. Identification of an AFLP marker linked to the stripe rust resistance gene Yr10 in wheat. Chinese Science Bulletin 46:1466–1469.CrossRefGoogle Scholar
  14. Sharp, P.G., Kreis, M., Shewry, P.R., Gale, M.D. 1988. Location of β -amylase sequence in wheat and its relatives. Theor. Appl. Genet. 75:289–290.CrossRefGoogle Scholar
  15. Somers, D.J., Isaac, P., Edwards, K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109:1105–1114.CrossRefGoogle Scholar
  16. Wan, A.M., Zhao, Z.H., Chen, X.M., He, Z.H., Jin, S.L., Jia, Q.Z., Yao, G., Yang, J.X., Wang, B.T., Li, G.B., Bi, Y.Q., Yuan, Z.Y. 2004. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis. 88:896–904.CrossRefGoogle Scholar
  17. Wang, L.F., Ma, J.X., Zhou, R.H., Wang, X.M., Jia, J.Z. 2002. Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, P.I. 178383 (Triticum aestivum L.). Euphytica 124:71–73.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • L. M. Wang
    • 1
  • Z. Y. Zhang
    • 1
    Email author
  • H. J. Liu
    • 1
  • S. C. Xu
    • 2
  • M. Z. He
    • 1
  • H. X. Liu
    • 1
  • O. Veisz
    • 3
  • Z. Y. Xin
    • 1
  1. 1.National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
  2. 2.Institute of Plant ProtectionCAASBeijingChina
  3. 3.Agricultural Research Institute of Hungarian Academy of SciencesMartonvásárHungary

Personalised recommendations