Physiological response of wheat seedlings to mild and severe osmotic stress

Abstract

In the present study the physiological status of two wheat (Triticum aestivum L.) cultivars subjected to polyethylene glycol-induced dehydration is evaluated. Wheat seedlings were exposed to either 8-d-long mild (15% PEG) or 24-h-long severe (30% PEG) osmotic stress by immersing their roots in PEG-supplemented Knop nutrient solution. Relative water content in the leaves and the levels of free proline, malondialdehyde, and hydrogen peroxide were chosen as indicative parameters corresponding to the degree of stress of the treated plants. Electrolyte leakage from leaf tissues of control and stressed plants was compared in terms of the common parameter Injury index used for characterizing cell membrane stability. In addition, a model test system was established for preliminary stress evaluation based on the kinetics of ion leakage. Short-term exposure to higher concentration of PEG was considered to be more harmful than prolonged mild stress as judged by RWC, proline and hydrogen peroxide accumulation, and injury index. The two cultivars demonstrated more obvious dissimilarities under conditions of prolonged mild stress than under severe stress.

References

  1. Alexieva, V., Sergiev, I., Mapelli, S., Karanov, E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24:1337–1344.

    CAS  Article  Google Scholar 

  2. Bandurska, H., Gniazdowska, S.H. 1995. Cell membrane stability in two barley genotypes under water stress conditions. Acta Soc. Bot. Poloniae 64:29–32.

    Article  Google Scholar 

  3. Bates, L.S., Walden, R.P., Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39:205–207.

    CAS  Article  Google Scholar 

  4. Cakmak, I., Horst, W.J. 1991. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, peroxidase activities in root tips of soybean (Glycine max L.). Physiol. Plant. 83:463–468.

    CAS  Article  Google Scholar 

  5. Chen, W., Li, P.H. 2002. Membrane stabilization by abscisic acid under cold aids proline in alleviating chilling injury in maize (Zea mays L.) cultured cells. Plant Cell Environ. 25:955–962.

    CAS  Article  Google Scholar 

  6. Claussen, W. 2005. Proline as a measure of stress in tomato plants. Plant Sci. 168:241–248.

    CAS  Article  Google Scholar 

  7. Czövek, P., Király, I., Páldi, E., Molnár, I., Gáspár, L. 2006. Comparative analysis of stress tolerance in Aegilops accessions and Triticum wheat varieties to detect different drought tolerance strategies. Acta Agronomica Hungarica 54:49–60.

    Article  Google Scholar 

  8. Farooq, S., Azam F. 2006. The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. J. Plant Physiol. 163:629–637.

    CAS  Article  Google Scholar 

  9. Fu, J., Huang, B. 2001. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Env. Exp. Bot. 45:105–112.

    CAS  Article  Google Scholar 

  10. Hare, P.D., Cress, W.A. 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 21:79–102.

    CAS  Article  Google Scholar 

  11. Hoekstra, F.A., Golovina, E.A. 1999. Membrane behavior during dehydration: implications for desiccation tolerance. Russ. J. Plant Physiol. 46:295–306.

    CAS  Google Scholar 

  12. Hoffmann, B., Burucs, Z. 2005. Adaptation of wheat (Triticum aestivum L) genotypes and related species to water deficiency. Cereal Res. Comm. 33:681–687.

    Article  Google Scholar 

  13. Hoson, T. 1998. Apoplast as the site of response to environmental signals. J. Plant Res. 111:167–177.

    CAS  Article  Google Scholar 

  14. Király, I., Czövek, P. 2002. Changes of MDA level and O2 scavenging enzyme activities in wheat varieties as a result of PEG treatment. Acta Biol. Szeged 46:105–106.

    Google Scholar 

  15. Kocheva, K.V., Georgiev, G.I., Kochev, V.K. 2005. A diffusion approach to the electrolyte leakage from plant tissues. Physiol. Plant. 125:1–9.

    CAS  Article  Google Scholar 

  16. Konno, H., Yamasaki, Y., Sugimoto, M., Takeda, K. 2008. Differential changes in cell wall matrix polysaccharides and glycoside-hydrolyzing enzymes in developing wheat seedlings differing in drought tolerance. J. Plant Physiol. 165:745–754.

    CAS  Article  Google Scholar 

  17. Kuzniak, E., Urbanek, H. 2000. The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiol. Plant. 22:195–203.

    CAS  Article  Google Scholar 

  18. Landjeva, S., Korzun, V., Stoimenova, E., Truberg, B., Ganeva, G., Börner, A. 2008. The contribution of the gibberellin-insensitive semi-dwarfing (Rht) genes to genetic variation in wheat seedling growth in response to osmotic stress. J. Agric. Sci. 146:275–286.

    CAS  Article  Google Scholar 

  19. Larher, F.R., Aziz, A., Gibon, Y., Trotel-Aziz, P., Sulpice, R., Bouchereau, A. 2003. An assessment of the physiological properties of the so-called compatible solutes using in vitro experiments with leaf discs. Plant Physiol. Biochem. 41:657–666.

    CAS  Article  Google Scholar 

  20. Mexal, J., Fisher, J.T., Osteryoung, J., Patric Reid, C.P. 1975. Oxygen availability in PEG solutions and its implications in plant — water relations. Plant Physiol. 55:20–24.

    CAS  Article  Google Scholar 

  21. Murry, M.B., Cape, J.N., Flower, D. 1989. Quantification of frost damage in plant tissues by rates of electrolyte leakage. New Phytol. 113:307–311.

    Article  Google Scholar 

  22. Noctor, G., Foyer, C.H. 1998. Ascorbate and glutathione: keeping active oxygen under control. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49:249–279.

    CAS  Article  Google Scholar 

  23. Pastori, G.M., Trippi, V.S. 1993. Antioxidant protection in a drought-resistant maize strain during leaf senescence. Physiol. Plant. 87:227–231.

    CAS  Article  Google Scholar 

  24. Piro, G., Leucci, M.R., Waldron, K., Dalessandro, G. 2003. Exposure to water stress causes changes in the biosynthesis of cell wall polysaccharides in roots of wheat cultivars varying in drought tolerance. Plant Science 165:559–569.

    CAS  Article  Google Scholar 

  25. Price, A.H., Hendry, G.A.F. 1991. Iron-catalysed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plant Cell Environ. 14:477–484.

    CAS  Article  Google Scholar 

  26. Richards, R.A., Rebetzke, G.J., Condon, A.G., van Herwaarden, A.F. 2002. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci. 42:111–121.

    Article  Google Scholar 

  27. Sánchez-Urdaneta, A.B., Peña-Valdivia, C.B., Trejo, C., Aguirre, J.R., Cárdenas, E.S. 2005. Root growth and proline content in drought sensitive and tolerant maize (Zea mays L.) seedlings under different water potentials. Cereal Res. Comm. 33:697–704.

    Article  Google Scholar 

  28. Serraj, R., Sinclair, T.R. 2002. Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ. 25:333–341.

    Article  Google Scholar 

  29. Smirnoff, N. 1993. The role of active oxygen in response of plants to water deficit and desiccation. New Phytol. 125:27–58.

    CAS  Article  Google Scholar 

  30. Smirnoff, N. 1998. Plant resistance to environmental stress. Curr. Opin. Biotech. 9:214–219.

    CAS  Article  Google Scholar 

  31. Turner, N.C. 1981. Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366.

    Article  Google Scholar 

  32. Van Rensburg, L., Kruger, G.H.J., Kruger, R.H. 1993. Proline accumulation as drought tolerance selection criterion: its relantionship to membrane integrity and chloroplast ultra structure in Nicotiana tabacum L. J. Plant Physiol. 141:188–194.

    Article  Google Scholar 

  33. Vendruscolo, E.C.G., Schuster, I., Pileggi, M., Scapim, C.A., Molinari, H.B.C., Marur, C.J., Vieira, L.G.E. 2007. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J. Plant Physiol. 164:1367–1376.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. V. Kocheva.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Kocheva, K.V., Kartseva, T., Landjeva, S. et al. Physiological response of wheat seedlings to mild and severe osmotic stress. CEREAL RESEARCH COMMUNICATIONS 37, 199–208 (2009). https://doi.org/10.1556/CRC.37.2009.2.6

Download citation

Keywords

  • electrolyte leakage
  • hydrogen peroxide
  • malondialdehyde
  • osmotic stress
  • polyethylene glycol
  • proline
  • wheat