Advertisement

Cereal Research Communications

, Volume 37, Issue 2, pp 159–167 | Cite as

Genetic diversity of Aegilops crassa and its relationship with Aegilops tauschii and the D genome of wheat

  • M. R. NaghaviEmail author
  • M. Ranjbar
  • A. Zali
  • M. J. Aghaei
  • M. Mardi
  • S. M. Pirseyedi
Genetics

Abstract

Simple sequence repeat (SSR) DNA markers were used to characterize the genetic diversity in 70 accessions of Aegilops crassa from Iran as well as to determine relationships among these accessions with 9 accessions of Aegilops tauschii (subsp. tauschii and strangulata) and 5 Triticum aestivum landraces. All twenty SSR primer pairs were polymorphic and identified a total number of 149 alleles corresponding to an average of 7.5 alleles per locus. The highest and lowest PIC values were obtained in subsp. strangulata and Ae. crassa accessions, respectively. Data obtained were used to estimate genetic similarity using the Dice coefficient, and dendrogram was constructed using the UPGMA method. The dendrogram separated the 84 accessions into two main groups. All species grouped according to their genomes. A good level of genetic diversity was observed in the accessions of Ae. crassa, even in geographically close regions, which can be used in the broadening of the genetic base of bread wheat. In addition, T. aestivum and subsp. tauschii were clustered further away from Ae. crassa, confirming probably chromosomal rearrangements in the Dgenome of Ae. crassa during the processes of evolution.

Keywords

alien gene transfer SSR wheat synthetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appels, R., Lagudah, E.S. 1990. Manipulation of chromosomal segments from wild wheat for the improvement of bread wheat. Aust. J. Plant Physiol. 17:253–266.Google Scholar
  2. Badaeva, E.D., Friebe, B., Zoshchuk, S.A., Zelenin, A.V., Gill, B.S. 1998. Molecular cytogenetic analysis of tetraploid and hexaploid Aegilops crassa. Chromosome Res. 6:629–637.CrossRefGoogle Scholar
  3. Badaeva, E.D., Amosova, A.V., Muravenko, O.V., Samatadze, T.E., Chikida, N.N., Zelenin, A.V., Friebe, B., Gill, B.S. 2002. Genome differentiation in Aegilops. 3. Evolution of the D genome cluster. Plant Syst. Evol. 231:163–190.CrossRefGoogle Scholar
  4. Cadalen, T., Boeuf, C., Bernard, S., Bernard, M. 1997. An intervarietal molecular marker map in Triticum aestivum L. Em. Thell. and comparison with a map from a wide cross. Theor. Appl. Genet. 94:367–377.CrossRefGoogle Scholar
  5. Dreisigacker, S., Kishii, M., Lage, J., Warburton, M. 2008. Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement. Aust. J. Agr. Res. 59:413–420.CrossRefGoogle Scholar
  6. Dvorak, J., Luo, M.C., Yang, Z.L., Zhang, H.B. 1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 97:657–670.CrossRefGoogle Scholar
  7. Eig, A. 1929. Monographisch-kritische Übersicht der Gattung Aegilops. Feddes Rep. 55:1–228.Google Scholar
  8. Guyomarc’h, H., Sourdille, P., Charmet, G., Edwards, K.J., Bernard, M. 2002. Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor. Appl. Genet. 104:1164–1172.CrossRefGoogle Scholar
  9. Halloran, G.M., Ogbonnaya, F.C., Lagudah, E.S. 2008. Triticum (Aegilops) tauschii in the natural and artificial synthesis of hexaploid wheat. Aust. J. Agr. Res. 59:475–490.CrossRefGoogle Scholar
  10. Hegde, S.G., Valkoun, J., Waines, J.G. 2002. Genetic diversity in wild and weedy Aegilops, Amblyopyrum, and Secale species — a preliminary survey. Crop Sci. 42:608–614.Google Scholar
  11. Kihara, H., Yamashita, K., Tanaka, M., Sakamoto, S. 1957. Geographical distribution of 4× and 6× forms of Aegilops crassa. Wheat Info. Serv. 5:11–12.Google Scholar
  12. Lelley, T., Stachel, M., Grausgruber, H., Vollmann, J. 2000. Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661–668.CrossRefGoogle Scholar
  13. Liu, C.G., Wu, Y.W., Hou, H., Zhang, C., Zhang, Y. 2002. Value and utilization of alloplasmic common wheats with Aegilops crassa cytoplasm. Plant Breeding 121:407–410.CrossRefGoogle Scholar
  14. McFadden, E.S., Sears, E.R. 1946. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37:81–89.CrossRefGoogle Scholar
  15. Medini, M., Hamza, S., Rebai, A., Baum, M. 2005. Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers. Genet. Resour. Crop Evol. 52:21–31.CrossRefGoogle Scholar
  16. Murai, K., Tsunewaki, K. 1993. Photoperiod-sensitive cytoplasmic male sterility in wheat with Aegilops crassa cytoplasm. Euphytica 67:41–48.CrossRefGoogle Scholar
  17. Naghavi, M.R., Mardi, M., Pirseyedi, S.M., Tabatabaei, S.F. 2008. Evaluation of genetic diversity in the subspecies of Aegilops tauschii using microsatellite markers. Cereal Res. Comm. 36:21–31.CrossRefGoogle Scholar
  18. Nei, M., Li, W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76:5269–5273.CrossRefGoogle Scholar
  19. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., Rafalski, A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2:225–238.CrossRefGoogle Scholar
  20. Ranjbar, M., Naghavi, M.R., Zali, A., Aghaei, M.J. 2007. Multivariate analysis of morphological variation in accessions of Aegilops crassa from Iran. Pakistan J. Biol. Sci. 10:1126–1129.CrossRefGoogle Scholar
  21. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149:2007–2023.PubMedPubMedCentralGoogle Scholar
  22. Rohlf, F.J. 1998. NTSYS-pc numerical taxonomy and multivariate analysis system, version 2.02. Exeter Software, Setauket, NY.Google Scholar
  23. Saghai-Maroof, M.A., Soliman, K., Jorgensen, R.A. Allard, R.W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81:8014–8018.CrossRefGoogle Scholar
  24. Sarkar, P., Stebbins, G.L. 1956. Morphological evidence concerning the origin of the B genome in wheat. Am. J. Bot. 43:297–304.CrossRefGoogle Scholar
  25. van Slageren, M.W. 1994. Wild Wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University Papers V.7. 513 pp.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  • M. R. Naghavi
    • 1
    Email author
  • M. Ranjbar
    • 1
  • A. Zali
    • 1
  • M. J. Aghaei
    • 2
  • M. Mardi
    • 3
  • S. M. Pirseyedi
    • 3
  1. 1.Agronomy and Plant Breeding Department, Agricultural CollegeUniversity of TehranKarajIran
  2. 2.Seed and Plant Improvement InstituteNational Plant Gene Bank of IranKarajIran
  3. 3.Department of GenomicsAgricultural Biotechnology Research Institute of IranKarajIran

Personalised recommendations