Appraisal of Environmental Interaction on Quality Traits of Rice by Additive Main Effects and Multiplicative Interaction Analysis


Superior grain quality is the main goal of rice breeders because of its high commercial value. Progress in selection for grain quality with yield in harsh environments is markedly affected by environmental variation. The genotype by environmental (G × E) interaction influence on grain quality was analyzed in this study, comprised of 17 rice hybrids grown in six location- year environments. The objective of this study was to examine the influence of G × E interaction for grain quality in hybrid rice by using AMMI model. Results of the trial revealed that grain quality was highly influenced by environmental factors and brings out the suitability of specific genotype to specific location/season through the biplot. On the other hand, external environmental variables can be regressed on the environmental scores to lead to a useful biological interpretation of the interaction effects, which is not possible in additive effect models. The implications of these results for rice hybrids on grain quality in varied environmental location are discussed.


  1. Ali, A., Karim, M.A., Ali, L., Ali, S.S., Jamil, M., Hassan, G., Mazid, A. 1992. Relation between rice grain quality and land preparation methods. International Rice Research Newsletter 17:3–7.

    Google Scholar 

  2. Asish, K.B., Kalaiyarasi, R., Thiyagarajan, K., Manonmani, S. 2006. Physico-chemical and cooking quality characteristics of promising varieties and hybrids in rice (Oryza sativa L.). Indian Journal of Genetics and Plant Breeding 66:107–112.

    Google Scholar 

  3. Gauch, H.G. 1988. Model selection and validation for yield trials with interaction. Biometrics 44:705–715.

    Article  Google Scholar 

  4. Gauch, J.H.G., Zobel, R.W. 1997. Identifying mega-environments and targeting genotypes. Crop Science 37:311–326.

    Article  Google Scholar 

  5. Hou, F.F., Hong, M.C., Song, S. 1988. Effect of soil texture on rice quality. Special publication, Taichung District Agricultural Improvement station 13:232–241.

    Google Scholar 

  6. IRRI. 1996. Standard Evaluation system. International Rice Research Institute, Manila, Philippines.

    Google Scholar 

  7. Juliano, B.O. 1971. A simplified assay for milled rice amylose. Cereal Science Today 16:334–338.

    Google Scholar 

  8. Little, R.R., Hilder, G.B., Dawson, E.H. 1958. Differential affect of dilute alkali on 25 varieties of milled white rice. Cereal Chemistry 35:111–126.

    CAS  Google Scholar 

  9. McLaren, C.G., Chaudhary, R.C. 1998. Use of additive main effects and multiplicative interaction models to analyze multilocation rice variety trials. Oryza 34:306–318.

    Google Scholar 

  10. Rao, K.S., Murthy, B.T.S., Dash, A.B., Lodh, S.B. 1996. Effect of time of transplanting on grain yield and quality traits of basmati types scented rice varieties in coastal Orissa. Indian Journal of Agricultural Science 66:333–337.

    Google Scholar 

  11. Rohilla, R., Singh, V.P., Singh, U.S., Singh, R.K., Khush, G.S. 2000. Aromatic Rices. Oxford and IBH Publishing Co. pvt. Ltd, New Delhi, India, pp. 201–216

    Google Scholar 

  12. Shanmuganathan, M., Ibrahim, S.M. 2005. AMMIanalysis for per day productivity of grain in rice hybrids. Crop Research 30:15–18.

    Google Scholar 

  13. Singh, R.K., Singh, U.S., Khush, G.S. 1998. Indian indigenous aromatic rices. Indian Farming 21:1–6.

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Anandan.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Anandan, A., Sabesan, T., Eswaran, R. et al. Appraisal of Environmental Interaction on Quality Traits of Rice by Additive Main Effects and Multiplicative Interaction Analysis. CEREAL RESEARCH COMMUNICATIONS 37, 131–140 (2009).

Download citation


  • AMMI
  • G × E interaction
  • Oryza sativa
  • quality traits