Cereal Research Communications

, Volume 36, Supplement 6, pp 303–313 | Cite as

Advances on the toxicity of the cereal contaminant Fusarium esadepsipeptides

  • Antonio Logrieco
  • Antonio Moretti
  • Giuseppina Mule
  • Costantino Paciolla
  • Alberto Ritieni
Session 3 Food Safety and Toxicology


Fusarium head blight (FHB) of cereals is a well known disease caused by a complex of several toxigenic species of Fusarium. FHB can reduce grain yield and quality, because of the accumulation of mycotoxins in cereal grains and derived foods and feeds. The pathogen mainly reported as causal agent of FHB is F. graminearum, that produces Deoxynivalenol (DON), the mycotoxin mostly associated to the disease. However in the last decade, in Europe, in addition to DON, the esadepsipeptides Enniatins (ENs) and Beauvericin (BEA) have been often reported as cereal contaminants, in association with different species such as F. avenaceum, F. poae, and F. tricinctum. The natural occurrence of high amounts of BEA and ENs in FHB small grains, evaluated with the phytotoxic and zootoxic properties of these metabolites, compel to an examination of their potential role in contributing to the severity of FHB. On the other hand, the recent studies that have provided further data on the biological role of the esadepsipeptide in plants and their toxicity toward plants, animal and humans, make it worthwhile to expand the knowledge on the significance and the toxicity of these frequent contaminants of cereals.


Fusarium Head Blight (FHB) Esadepsipeptides Enniatins Beauvericin Mycotoxins Fusarium avenaceum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burmeister, H.R., Plattner, R.D. 1987. Enniatin production by Fusarium tricinctum and its effect on germinating wheat seeds. Phytopathology 77:1483–1487.CrossRefGoogle Scholar
  2. Calò, L., Fornelli, F., Ramires, R., Nenna, S., Tursi, A., Caiaffa, M.F., Macchia, L. 2004. Cytotoxic effects of the mycotoxin beauvericin to human cell lines of myeloid origin. Pharmacological Research 49:73–77.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Cook, J.L., Routes, B.A., Leu, C.Y., Walker, T.A., Colvin, K.L. 1999. E1A oncogeneinduced cellular sensitization to immune-mediated apoptosis in independent of p53 and resistant to blockade by E1B19 kDa protein. Experimental Cell Research, 252:199–210.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Desjardins, A.E. 2006. Fusarium mycotoxins: Chemistry, Genetics and Biology. American Phythopathological Society Press. St. Paul, Minnesota, USA.Google Scholar
  5. Desjardins, A.E., Busman, M., Proctor, R.H., Stessman, R. 2007. Wheat kernel black point and fumonisin contamination by Fusarium proliferatum. Food Additives and Contaminants 24:1131–1137.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Dombrink-Kurtzman, M.A., 2003. Fumonisin and beauvericin induce apoptosis in turkey peripheral blood lymphocytes. Mycopathologia, 156:357–364.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Fotso, J., Smith, J.S. 2003. Evaluation of beauvericin toxicity with the bacterial bioluminescence assay and the Ames mutagenicity bioassay. Journal of Food Science 68:1938–1941.CrossRefGoogle Scholar
  8. Fukuda, T., Arai, M., Yamaguchi, Y., Masuma, R., Tomoda, H., Omura, S. 2004. New beauvericins, potentiators of antifungal miconazole activity, produced by Beauveria sp. FK1-1366. Taxonomy, fermentation, isolation and biological properties. Journal of Antibiotics (Tokyo) 57:110–116.CrossRefGoogle Scholar
  9. Gäumann, E., Naef-Roth, St., Kern, H. 1960. Zur phytotoxischen Wirksamkeit der Enniatine. Phytopathologische Zeitschrift 40:45–51.CrossRefGoogle Scholar
  10. Gupta S., Montllor, C., Hwang, Y.S. 1995. Isolation of novel beauvericin analogues from the fungus Beauveria bassiana. Journal of Natural Products 58:733–738.CrossRefGoogle Scholar
  11. Hamill, R.L., Higgens, C.E., Boaz, H.E., Gorman, M. 1969. The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedron Letters 49:4255–4258.CrossRefGoogle Scholar
  12. Harnois, D.M., Que, F.G., Celli, A., LaRusso, N.F., Gores, G.J. 1997. Bcl-2 is overexpressed and alters the threshold for apoptosis in a cholangiocarcinoma cell line. Hepatology 26:884–890.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Herrmann, M., Zocher, R., Haese, A. 1996. Enniatin production by Fusarium strains and its effect on potato tuber tissue. Applied and Environmental Microbiology 62:393–398.PubMedPubMedCentralGoogle Scholar
  14. Hershenhorn, J., Park, S.H., Stierle, A., Strobel, G.A. 1992. Fusarium avenaceum as a novel pathogen of spotted knapweed and its phytotoins acetamido-butenolide and enniatin B. Plant Science 86:155–160.CrossRefGoogle Scholar
  15. Hilgenfeld, R., Saenger, W. 1982. Structural chemistry of natural and synthetic ionophores and their complexes with cations. In: Boschke, F.L. (ed.), Topic in Current Chemistry Springer-Verlag, Berlin, Vol. 101, p. 1–82.Google Scholar
  16. Holownia, A., Ledig, M., Menez, J.F. 1997. Ethanol-induced cell death in cultured rat astroglia. Neurotoxicology and Teratology 19:141–146.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Holownia, A., Ledig, M., Braszko, J.J., Menez, J.F. 1999. Aceraldehyde cytotoxicity in cultured rat astrocytes. Brain Research 833:202–208.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Hoornstra, D., Andersson, M.A., Mikkola, R., Salkinoja-Salonen, M.S. 2003. A new method for in vitro detection of microbially produced mitochondrial toxins. Toxicology in Vitro, 17:745–751.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Huang, Y.G., Barl, B., Ivanochko, G. 1999. Selected non-timber forest products with medicinal application from Jilin province in China. In: Davidson-Hunt, I., Duchesne, L.C., Zasada, J.C. (eds), Forest communities in the third millennium: linking research, business and policy toward a sustainable non-timber forest product sector. Proceeding of the Ontario Meeting, October 1–4, 1999. Kenora, Ontario, Canada, 000–000.Google Scholar
  20. Ivanova L., Skjerve, E., Eriksen, G.S., Uhlig, S. 2006. Cytotoxicity of enniatins A, A1, B, B1, B2, and B3 from Fusarium avenaceum. Toxicon, 47: 868–876.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Iwata, M., Harada, K., Katayanagi, K., Saito, T., Kaneko, S., Lobayashi, K., Nakanuma, Y. 2003. Apoptosis of murine cultured epithelial cells induced by glicochenodeoxycholic acid involves Fas receptor and its ligand. Hepatology Research 25:329–342.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Jestoi, M., Rokka, M., Yli-Mattila, T., Parikka, P., Rizzo, A., Ritieni, A., Peltonen, K. 2004a. Presence and concentrations of the Fusarium -related mycotoxins beauvericin, enniatins and moniliformin in Finnish grain samples. Food Additives and Contaminants 21:794–802.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Jestoi, M., Somma, M.C., Kouva, M., Veijalainen, P., Rizzo, A., Ritieni, A., Peltonen, K. 2004b. Levels of mycotoxins and sample cytotoxicity of selected organic and conventional grain-based products purchased from Finnish and Italian markets. Molecular and Nutritional Food Research 48:000–000.Google Scholar
  24. Jow, G.M., Chou, C.J., Chen, B.F., Tsai, J.H. 2004. Beauvericin induces cytotoxic effects in human acute lymphoblastic leukemia cells through cytochrome c release, caspase 3 activation: the causative role of calcium. Cancer Letters 216:165–173.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Kamyar, M., Rawnduzi, P., Studenik, C.R., Kouri, K., Lemmens-Gruber, R. 2004. Investigation of the electrophysiological properties of enniatins. Archives of Biochemistry and Biophysics 429:215–223.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Klaric, M.S., Rumora, L., Ljubanovic, D., Pepeljnjak, S. 2008. Cytotoxicity and apoptosis induced by fumonisin B1, in porcine kidney PK 15 cells: effects of individual and combined treatment. Archives of Toxicology 82:247–255.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Klaric, M.S., Pepeljnjak, S., Domijan, A.M., Petrik, J. 2007. Lipid peroxidation and glutathione levels in porcine kidney PK 15 cells after individual and combined treatment with fumonisin B1, beauvericin and ochratoxin A. Basic Clinical Pharmacological Toxicology 100:157–164.CrossRefGoogle Scholar
  28. Kosiak, B., Torp, M., Skjerve, E., Thrane, U. 2003. The prevalence and distribution of Fusarium species in Norwegian cereals: a survey. Acta Agriculturae Scandinavica, Section B: Soil and Plant Science 53:168–176.CrossRefGoogle Scholar
  29. Kouri, K.M., Lemmens, M., Lemmens-Gruber, R. 2003. Beauvericin-induced channels in ventricular myocytes and liposomes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1609:203–210.CrossRefGoogle Scholar
  30. Kroslak, M. 2002. Efficacy and acceptability of fusafungine, a local treatment for both nose and throat infections, in adult patients with upper respiratory tract infections. Current Medical Research and Opinion 18:194–200.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Langseth, W., Bernhoft, A., Rundberget, T., Kosiak, B., Gareis, M. 1999. Mycotoxin production and cytotoxicity of Fusarium strains isolated from Norwegian cereals. Mycopathologia 144:103–113.CrossRefGoogle Scholar
  32. Lee, H.S., Song, H.H., Jeong, J.H., Shin, C.G., Choi, S.U., Lee, C. 2008. Citotoxicity of enniatins H, I, and MK 1688 from Fusarium oxysporum KFCC 11363P. Toxicon, 51:1178–1185.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Lee, M.D., Calazzo, J.L., Staley, A.J., Lee, J.C., Warren, M.S., Fuernkranz, H., Chamberland, S., Lomocskaya, O., Miller, G.H. 2001. Microbial fermentationderived inhibitors of efflux-pump-mediated drug resistance. Il Farmaco 56:81–85.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Lemmens-Gruber, R., Rachoy, B., Steininger, E., Kouri, K., Saleh, P., Krska, R., Josephs, R., Lemmens, M. 2000. The effect of the Fusarium metabolites beauvericin on electromechanical and-physiological properties in isolated smooth and hearth muscle preparations of guinea pigs. Mycopathologia 149:5–12.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Logrieco, A., Moretti, A., Castella, G., Kostecki, M., Golinski, P., Ritieni, A., Chelkowki, J. 1998. Beauvericin production by Fusarium species. Applied and Environmental Microbiology 64:3084–3088.PubMedPubMedCentralGoogle Scholar
  36. Logrieco, A., Moretti, A., Ritieni, A., Caiffa, M.F., Macchia, L. 2002a. Beauvericin: Chemistry, Biology and Significance. In: Upadhyay, R.K. (ed.), Advances in microbial toxin research and its biotechnological exploitation. Kluwer Academic/Plenum Publishers, New York, p. 23–30.CrossRefGoogle Scholar
  37. Logrieco, A., Rizzo, A., Ferracane, R., Ritieni, A. 2002b. Occurrence of beauvericin and enniatins in wheat affected by Fusarium avenaceum head blight. Applied and Environmental Microbiology 68:82–85.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Logrieco A.F., and A. Moretti. 2008. Between emerging and historical problems: an overview of the main toxigenic fungi and mycotoxins concerns in Europe. In: Mycotoxins. (Leslie J., R. Bandyopadhyay, A. Visconti eds)., 139–155.
  39. Macchia, L., Caiffa, M.F., Fornelli, F., Calò, L., Nenna, S., Moretti, A., Logrieco, A., Tursi, A. 2002. Apoptosis induced by the Fusarium mycotoxin beauvericin in mammalian cells. Journal of Applied Genetics 43a:363–371.Google Scholar
  40. Morrison, E., Kosiak, B., Ritieni, A., Aastveit, A.H., Uhlig, S., Bernhoft, A. 2002. Mycotoxin production by Fusarium avenaceum strains isolated from Norwegian grain and the cytotoxicity of rice culture extracts to porcine kidney epithelial cells. Journal of Agricultural and Food Chemistry 50:3070–3075.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Nash, P.B., Purner, M.B., Leon, R.P., Clarke, P., Duke, R.C., Curiel, T.J. 1998. Toxoplasma gondii -infected cells are resistant to multiple inducers of apoptosis. Journal of Immunology 160:1824–1830.Google Scholar
  42. Nilanonta, C., Isaka, M., Kittakoop, P., Trakulnaleamsai, S., Tanticharoen, M., Thebtaranonth, Y. 2002. Precursor-directed biosynthesis of beauvericin analogs by the the insect pathogenic fungus Paecilomyces tenuipes BCC 1614. Tetrahedron 58:3355–3360.CrossRefGoogle Scholar
  43. Ojcius, D.M., Zychilinsky, A., Zheng, L.M., Young, D.E. 1991. Ionophore induced apoptosis: role of DNA fragmentation and calcium fluxes. Experimental Cell Research 197:43–49PubMedCrossRefPubMedCentralGoogle Scholar
  44. Paciolla, C., Dipierro, N., Mulè, G., Logrieco, A., Dipierro, S. 2004. The mycotoxins beauvericin and T-2 induce cell death and alteration in the ascorbate metabolism in tomato protoplasts. Physiological and Molecular Plant Pathology 65:49–56.CrossRefGoogle Scholar
  45. Paciolla, C., Ippolito, M.P., Logrieco, A., Dipierro, N., Mulè, G., Dipierro, S. 2008. A different trend of antioxidant responses makes tomato plants less susceptible to beauvericin than T-2 mycotoxin phytotoxicity. Physiological and Molecular Plant Pathology (in press).Google Scholar
  46. Pocsfalvi, G., Di Landa, G., Ferranti, P., Ritieni, A., Randazzo, G., Malorni, A. 1997. Observation of non-covalent interaction between beauvericin and oligonucleotides using rlrctrospray ionization mass spectrometry. Rapid Communication in Mass Spectrometry 11:265–272.CrossRefGoogle Scholar
  47. Que, F.G., Phan, V.A., Phan, V.H., LaRusso, N.F., Gores, G.J. 1999. GUDC inhibits cytochrome c release from human cholangiocyte mitochondria. Journal of Surgical Research 83:100–105.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Sagakuchi, M., Moretti, A., Endo, E., Matsuda, Y., Toyoda, H., Ouchi, S. 2000. An approach to the use of plant sensitivity for simple detection of mycotoxins. In: Proceeding of First Asian Conference of Plant Pathology. Kuala Lumpur, Malaysia, August 2000, 262–279.Google Scholar
  49. Savard, M.E., Blackwell, B.A. 1994. Spectral characteristics of secondary metabolites from Fusarium fungi. In: Miller, J.D., Trenholm, H.L. (eds), Mycotoxins in grain, compounds other than aflatoxin. Eagan Press, St.Paul, Minnesota, USA.Google Scholar
  50. Sharom, F.J., Lu, P., Liu, R., Yu, X. 1998. Linear and cyclic peptides as substrates and modulators of P-glycoprotein: peptide binding and effects on drug transport and accumulation. Biochemical Journal 333:621–630.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Tomoda, H., Nishida, H., Huang, X.H., Masuma, R., Kim, Y.K., Omura, S. 1992a. New cyclodepsipeptides, enniatin D, E and F produced by Fusarium sp. FO-1305. Journal of Antibiotics (Tokyo) 45:1207–1215.CrossRefGoogle Scholar
  52. Tomoda, H., Huang, X.H., Cao, J., Nishida, H., Nagao, R., Okuda, S., Tanaka, H., Omura, S., Arai, H., Inoue, K. 1992b. Inhibition of acyl-CoA:cholesterol acyltransferase activity by cyclodepsipeptide antibiotics. Journal of Antibiotics (Tokyo) 45:1626–1632.CrossRefGoogle Scholar
  53. Uhlig, S., Ivanova, L. 2004. Determination of beauvericin and four other enniatins in grain by liquid chromatography-mass spectrometry. Journal of Chromatography A, 1050:173–178.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Uhlig, S., Gutleb, A., Thrane U., Flåøyen, A. 2004. Identification of cytotoxic principles of Fusarium avenaceum. Poster presentation at the XI International IUPAC Symposium on Mycotoxins and Phycotoxins. Bethesda, May 2004, Maryland, USA.Google Scholar
  55. Uhlig, S., Torp, M., Heier, B.T. 2006 Beauvericin and enniatins A, A1, B and B1 in Norwegian grain: A survey. Food Chemistry 94:193–201.CrossRefGoogle Scholar
  56. Wu, S.N., Chen, H., Liu, Y.C., Chiang, H.T. 2002. Block of L-type Ca2+ current by beauvericin, a toxic cylopeptide, in the NG108-15 neuronal cell line. Chemical Research in Toxicology 15:854–860.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Yli-Mattila, T., Paavanen-Huhtala, S., Parikka, P., Hietaniemi, V., Jestoi, M., Rizzo, A. 2004a. Toxigenic fungi and mycotoxins in Finnish cereals. In: Logrieco, A., Visconti, A. (eds), An overview on toxigenic fungi and mycotoxins in Europe. Kluver Academic Publishers, The Netherlands, p. 83–100.CrossRefGoogle Scholar
  58. Yli-Mattila T., Paavanen-Huhtala, S., Parikka, P., Kostantinova, P., Gagkaeva, T.Y. 2004b. Molecular and morphological diversity of Fusarium species in Finland and north-western Russia. European Journal of Plant Pathology 110:573–585.CrossRefGoogle Scholar
  59. Zhang, L., Yan, K., Zhang, Y., Huang, R., Bian, J., Zheng, C., Sun, H., Chen, Z., Sun, N., An, R., Min, F., Zhao, W., Zhuo, Y., You, J., Song, Y., Yu, Z., Liu, Z., Yang, K., Gao, H., Dai, H., Zhang, X., Wang, J., Fu, C., Pei, G., Liu, J., Zhang, S., Goodfellow, M., Jiang, Y., Kuai, J., Zhou, G., Chen, X. 2007. High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proceedings of the National Academy of Sciences of the United States of America 104:4606–4611.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Zonno, M.C., Vurro, M. 1999. Effect of fungal toxins on germination of Striga hermontica seeds. Weed Research 39:15–20.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Antonio Logrieco
    • 1
  • Antonio Moretti
    • 1
  • Giuseppina Mule
    • 1
  • Costantino Paciolla
    • 2
  • Alberto Ritieni
    • 3
  1. 1.Institute of Sciences of Food Production (ISPA)National Research Council (CNR)BariItaly
  2. 2.Dipartimento di Biologia e Patologia Vegetale- Sezione di Biologia VegetaleUniversità degli Studi di BariBariItaly
  3. 3.Dipartimento di Scienza degli AlimentiUniversità degli Studi di Napoli “Federico II”Portici-NapoliItaly

Personalised recommendations