The Effect of Cytokinins on the Concentration of Hydroxyl Radicals and the Intensity of Lipid Peroxidation in Nitrogen Deficient Wheat

Abstract

Senescence of plant tissues is a natural process that may be accelerated by unfavourable environmental factors, including disbalanced mineral nutrition. During plant senescence, the concentration of reactive oxygen species (ROS) increases in the cells, whereas the concentration of cytokinins declines. Negative correlation between ROS, such as hydroxyl radical (·OH), and concentration of cytokinins triggers the question whether the addition of cytokinins can reduce ROS production and/or its concentration. This would also reduce the level of lipid peroxidation (LP) in the senescing tissue, which is the final phase in the destruction of cell membranes by ROS.

With the aim to address these questions, the effects of cytokinins (trans-zeatin, TZ, and benzyladenine, BA) on the concentration of·OH and LP were studied in wheat subjected to nitrogen deficiency. Foliar application of TZ reduced the concentration of·OH and the intensity of LP in the leaves of young wheat plants insufficiently supplied with nitrogen.

References

  1. Berlett, B.S., Stadtman, E.R. 1997. Protein oxidation in aging, disease, and oxidative stress. Am. Soc. Biochem. Mol. Biol. 272:20313–20316.

    CAS  Google Scholar 

  2. Cadenas, E. 1989. Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58:79–110.

    CAS  Article  Google Scholar 

  3. Cheesman, K.H., Beavis, A., Esterbaurer, H. 1988. Hydroxyl-radical-induced iron-catalysed degradation of 2-deoxyribose. Biochem. J. 252:649–653.

    Article  Google Scholar 

  4. Grossman, S., Leshem, Y.Y. 1978. Lowering of endogenous lipoxygenase activity in Pisum sativum foliage by cytokinin as related to senescence. Physiol. Plant. 43:359–362.

    CAS  Article  Google Scholar 

  5. Haberer, G., Kieber, J.J. 2002. Cytokinins, new insights into a classic phytohormone. Plant Physiol. 128:354–362.

    CAS  Article  Google Scholar 

  6. Hai, D.Q., Kovacs, K., Matkovics, I., Matkovics, B. 1975. Properties of enzymes X. Peroxidase and superoxide dismutase contents of plant seeds. Biochem. Physiol. Pflanzen 167:357–359.

    Article  Google Scholar 

  7. He, P., Osaki, M., Takebe, M., Shinano, T., Wasaki, J. 2005. Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J. Exp. Bot. 56:1117–1128.

    CAS  Article  Google Scholar 

  8. Hoagland, D.R., Arnon, D.I. 1950. The water-culture method for growing plants without soil. Calif. Agricul. Exp. Station Circ. 347:1–32.

    Google Scholar 

  9. Huynh, L.N., VanToai, T., Streeter, J., Banowetz, G. 2005. Regulation of flooding tolerance of SAG12:ipt Arabidopsis plants by cytokinin. J. Exp. Bot. 56:1397–1407.

    CAS  Article  Google Scholar 

  10. Kuiper, D. 1988. Growth responses of Plantago major L. ssp. pleiosperma (Pilger) to changes in mineral supply: evidence for regulation by cytokinins. Plant Physiol. 87:555–557.

    CAS  Article  Google Scholar 

  11. Kuiper, D., Staal, M. 1987. The effect of exogenously applied plant growth substances on the physiological plasticity in Plantago major ssp. pleiosperma: responses of growth, shoot to root ratio and respiration. Physiol. Plant. 69:651–658.

    CAS  Article  Google Scholar 

  12. Leshem, Y.Y., Grossman, S., Frimer, J., Ziv, J. 1979. Endogenous lipoxygenase control and lipid associated free radical scavenging as modes of cytokinin action in plant senescence retardation. In: Appelqvist, L.A., Liljenberg, C. (eds.) Advances in the Biochemistry and Physiology of Plant Lipids. Elsevier/North-Holland Biomedical Press, Amsterdam, The Netherlands, pp. 193–198.

    Google Scholar 

  13. Leshem, Y.Y., Wurzburger, J., Grossman, S., Frimer, A.A. 1981. Cytokinin interaction with free radical metabolism and senescence: Effects on endogenous lipoxygenase and purine oxidation. Physiol. Plant. 53:9–12.

    CAS  Article  Google Scholar 

  14. Liu, X., Huang, B. 2002. Cytokinin effects on creeping bentgrass response to heat stress. Crop Sci. 42:466–472.

    CAS  Article  Google Scholar 

  15. Mok, D.W.S., Mok, M.C. 2001. Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:89–118.

    CAS  Article  Google Scholar 

  16. Placer, Z.A., Cushman, L.L., Johnson, B.C. 1966. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal. Biochem. 16:359–364.

    CAS  Article  Google Scholar 

  17. Polesskaya, O.G., Kashirina, E.I., Alekhina, N.D. 2004. Changes in the activity of antioxidant enzymes in wheat leaves and roots as a function of nitrogen source and supply. Russian J. Plant Physiol. 51:615–620.

    CAS  Article  Google Scholar 

  18. Rahayu, Y.S., Walch-Liu, P., Neumann, G., Römheld, V., von Wirén, N., Bangerth, F. 2005. Root-derived cytokinins as long-distance signals for NO3-induced stimulation of leaf growth. J. Exp. Bot. 56:1143–1152.

    CAS  Article  Google Scholar 

  19. Smirnoff, N. 1995. Antioxidant systems and plant response to the environment. In: Smirnoff, N. (ed.) Environment and Plant Metabolism: Flexibility and Acclimation. BIOS Sci. Publ., Oxford, UK, pp. 217–243.

    Google Scholar 

  20. Štajner, D., Kevrešn, S., Gašić, O., Sarić, Z. 1997. Induction of antioxidant enzyme activities and pigment content in wheat as a result of nitrogen supply and inoculation with Azotobacter chroococcum. Cer. Res. Commun. 25:1007–1010.

    Google Scholar 

  21. Wingler, A., von Schaewen, A., Leegood, R.C., Lea, P.J., Quick, W.P. 1998. Regulation of leaf senescence by cytokinin, sugars, and light. Plant Physiol. 116:329–335.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Maksimović.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Stoparić, G., Maksimović, I. The Effect of Cytokinins on the Concentration of Hydroxyl Radicals and the Intensity of Lipid Peroxidation in Nitrogen Deficient Wheat. CEREAL RESEARCH COMMUNICATIONS 36, 601–609 (2008). https://doi.org/10.1556/CRC.36.2008.4.9

Download citation

Keywords

  • trans-zeatin
  • benzyladenine
  • Triticum aestivum
  • hydroxyl radical
  • lipid peroxidation
  • nitrogen deficiency