Cereal Research Communications

, Volume 36, Issue 4, pp 543–552 | Cite as

Identification of Wheat Line Yw243 on Comprehensive Resistance to Several Diseases by Pathogens and Molecular Markers

  • H. Xie
  • Z. S. Lin
  • Z. Y. Zhang
  • L. P. Du
  • Z. Y. Xin
  • Y. Z. Ma
  • X. G. YeEmail author
  • X. ChenEmail author


The common wheat line, YW243, developed in our research group, was tested for the resistances of barley yellow dwarf virus (BYDV), powdery mildew (Pm) and stripe rust in field, and was analyzed by molecular markers for convenient trace of the resistant genes in breeding. Genomic in situ hybridization (GISH) analysis and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) assay further demonstrated that YW243 was a homozygous multiple translocation line of Triticum aestivum, Thinopyrum intermedium and Secale cereale (T7DS·7DL-7XL & 1BL·1RS). The disease resistance test and marker analysis showed that YW243 carried seven resistance genes to the three diseases, including Bdv2 to BYDV on 7DL-7XL, Pm4 to powdery mildew on 2AL, Yr2, Yr9, Sr 31 and Lr26 and a new Yr to stripe rust on 7B, 1BL, 1RS and 2BL. Restriction fragment length polymorphism (RFLP) markers Xpsr687 and Xwg380, sequence tagged site (STS) marker STS1700, simple sequence repeat (SSR) markers Xgwmc364 and Xgwm582, SSR markers Xgwm388 and Xgwm501 can be used as diagnostic tools to track Bdv2, Pm4, Yr2, Yr9 and Yr in YW243, respectively; and two amplified fragment length polymorphism (AFLP) markers M54E63-700 and M54E64-699 can also be used to select Yr in YW243.


Triticum aestivum barley yellow dwarf virus powdery mildew stripe rust molecular markers pyramid breeding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banks, P.M., Larkin, P.J., Bariana, H.S., Lagudah, E.S., Appels, R., Waterhouse, P.M., Brettell, R.I.S., Chen, X., Xu, H.J., Xin, Z.Y., Qian, Y.T., Zhou, X.M., Cheng, Z.M., Zhou, G.H. 1995. The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome 38:395–405.CrossRefGoogle Scholar
  2. Bariana, H.S., Parry, N., Barclay, I.R., Loughman, R., McLean, R.J., Shankar, M., Wilson, R.E., Willey, N.J., Francki, M. 2006. Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor. Appl. Genet. 112:1143–1148.CrossRefGoogle Scholar
  3. Brettell, R.I.S., Banks, P.M., Cauderon, Y., Chen, X., Cheng, Z.M., Larkin, P.J., Waterhouse, P.M. 1988. A single wheatgrass chromosome reduces the concentration of barley yellow dwarf virus in wheat. Ann. Appl. Biol. 113:599–603.CrossRefGoogle Scholar
  4. Cauderon, Y., Saigne, B., Dauge, M. 1973. The resistance to wheat rusts of Agropyron intermedium and its use in wheat improvement. In: Proc. 4th Wheat Genet. Symp. pp. 401–407.Google Scholar
  5. Devos, K.M., Atkinson, M.D., Chinoy, C.N. 1992. RFLP based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theor. Appl. Genet. 83:931–949.CrossRefGoogle Scholar
  6. Hsam, S.L.K., Lapochkina, I.F., Zeller, F.J. 2003. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica 133:367–370.CrossRefGoogle Scholar
  7. Larkin, P.J., Banks, P.M., Lagudah, E.S., Appels, R., Chen, X., Xin, Z.Y., Ohm, H.W., McIntosh, R.A. 1995. Disomic Thinopyrum intermedium addition lines in wheat with barley yellow dwarf virus resistance and with rust resistances. Genome 38:385–394.CrossRefGoogle Scholar
  8. Liang, R.Q., Zhang, Y.R., You, M.S., Mao, S.F., Song, J.M., Liu, G.T. 2002. Multi-stacking SDS-PAGE for wheat glutenin polymer and it’s relation to bread making quality. Acta Agronomica Sinica 28:609–614.Google Scholar
  9. Lin, F., Xu, S.C., Zhang, L.J., Miao, Q., Zei, Q., Li, N. 2005. SSR marker of wheat stripe rust resistance gene Yr2. Journal of Triticeae Crops (in Chinese) 25:17–19.Google Scholar
  10. Liu, J.Y., Liu, D.J., Tao, W.J., Li, W.L., Chen, P.D. 1999. Study on the conversion of RFLP markers co-segregated with Pm4a to sequenced-tagged-site markers. Journal of Agricultural Biotechnology 2:113–116.Google Scholar
  11. Liu, Z.Y., Sun, Q.X., Ni, Z.F., Nevo, E, Yang, T.M. 2002. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123:21–29.CrossRefGoogle Scholar
  12. Ma, Y.Z., Tomita, T., Nakata, N. 1997. Analysis of the chromosome composition of common wheat-Agropyron intermedium partial amphiploid, Yuan Zhong 2 by in situ hybridization. Chinese Journal of Genetics 24:344–349.Google Scholar
  13. Ma, Z.Q., Sorrells, M.E., Tanksley, S.D. 1994. RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat. Genome 37:871–875.CrossRefGoogle Scholar
  14. McIntosh, R.A., Devos K.M., Dubcovsky, J., Rogers, W.J. 2001: Catalog of gene symbols for wheat: Supplement pp 14.
  15. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149:2007–2023.PubMedPubMedCentralGoogle Scholar
  16. Sharma, H., Ohm, H., Perry, K.L. 1997. Registration of barley yellow dwarf virus resistant wheat germplasm Line P29. Crop Sci. 37:1032–1033.CrossRefGoogle Scholar
  17. Sharp, P.J., Chao, S., Desai, S., Gale, M.D. 1988. Location of beta-amylase sequences in wheat and its relatives. Theor. Appl. Genet. 75:286–290.CrossRefGoogle Scholar
  18. Singh, R.P., Burnett, P.A., Albarran, M., Rajaram, S. 1993. Bdv1: a gene for tolerance to barley yellow dwarf virus in bread wheats. Crop Sci. 33:231–234.CrossRefGoogle Scholar
  19. Weng, D.X., Xu, S.C., Wan, A.M., Li, J.P., Wu, L.R. 2005. Microsatellite marker linked with stripe rust resistant gene Yr9 in wheat. Acta Genetica Sinica (in Chinese with English abstract) 32:937–941.CrossRefGoogle Scholar
  20. Xie, C.J., Sun, Q. X., Ni, Z. F., Yang, T. M., Nevo, E., Fahima, T. 2003. Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers. Theor. Appl. Genet. 106:341–345.CrossRefGoogle Scholar
  21. Xin, Z.Y., Johnson, R., Law, C.N., Worland, A.J. 1984. Agenetic analysis of genes for stripe rust resistance in the winter wheat variety Feng-kang 13. Acta Agronomica Sinica (in Chinese with English abstract) 10:217–222.Google Scholar
  22. Xin, Z.Y., Xu, H.J., Chen, X., Lin, Z.S., Zhou, G.H., Qian, Y.T., Chen, Z.M., Larkin, P.J., Banks, P.M., Apples, R., Clarke, B., Brettell, R.I.S. 1991. Development of common wheat germplasm resistant to barley yellow dwarf virus by biotechnology. Sci. China Ser. B (in Chinese with English abstract) 34:1055–1062.Google Scholar
  23. Xin, Z.Y., Zhang, Z.Y., Chen, X., Lin, Z.S., Ma, Y.Z., Xu, H.J., Banks, P.M., Larkin, P.J. 2001. Development and characterization of common wheat-Thinopyrum intermedium translocation lines with resistance to barley yellow dwarf virus. Euphytica 119:161–165.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

Authors and Affiliations

  1. 1.National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
  2. 2.Department of Plant ScienceBeijing Agricultural CollegeBeijingChina

Personalised recommendations