Cereal Research Communications

, Volume 36, Issue 4, pp 647–657 | Cite as

Changing of Flight Phenology and Ecotype Expansion OF THE European Corn Borer (Ostrinia Nubilalis Hbn.) in Hungary

Part 1. Biomathematical evaluation
  • S. KeszthelyiEmail author
  • J. Puskás
  • L. Nowinszky


The studies aimed to acquire the widest possible information on the annual flight in Hungary of the European corn borer (ECB), Ostrinia nubilalis Hübner (Lepidoptera: Pyralidae). The investigations used biomathematical (Part 1) and graphical (Part 2) evaluation to document changes in the individual population number.

The study was conducted in Hungary using ECB moth capture records from the Plant Protection Information System black light trap system (1991–2004). We have drawn conclusions on the appearance of annual flights and the tendency of alterations in flight direction by means of light trap results in four different areas in Hungary. We calculated the flight peak quotients, the individual population numbers of the second flight peak, the distinctions of individual numbers of two flight peaks in this part.

As previously published, alterations in flight direction of ECB flights began at different times in Hungary. In the current study, a gradual disappearance of the univoltine ecotype and gradual appearance of the bivoltine ecotype ECB in Hungary is confirmed by the data obtained between 1991–2004. Flight peak quotients and data concerning the second flight peak have confirmed change this process, too: the appearance of a second flight peak in Northwestern Hungary from 1995–1996 (FP = 1.27), the more significant appearance of flights in August in Western Hungary (FP = 1.05) and Northeastern Hungary (FP = 1.45), and a three and four times more individual number of the second flight peak in Southeastern Hungary (FP = 3.44). Flight peak quotients, individual population numbers of the second flight peak, the tendency towards a difference in population number of the two peaks, and size of increase of these values demonstrates the southeastern-northwestern presence of the bivoltine ecotype in Hungary.


European corn borer flight 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Fuhrer, J. 2003. Agroecosystem responses to combinations of elevated CO2, ozone, and climate change. Agric. Eco. Environ. 97(1–3):1–20.CrossRefGoogle Scholar
  2. Gordon, H.B., Davies, D.R. 1975. Mathematical prediction of climatic change. Nature 253(5491):419–420.CrossRefGoogle Scholar
  3. Gourdiaan, J., Zadoks, J.C. 1993. Global climate change: modelling the potential responses of ecosystems with special reference to crop protection. Environ. Pollut. 87:215–224.Google Scholar
  4. Jolánkai, M. 2005. A klímaváltozás hatása a növénytermesztésre (Impact of climate change on the plant production). “Agro 21” Füzetek 41:47–58.Google Scholar
  5. Keszthelyi, S. 2004a. A kukoricamoly napjainkban megfigyelhető felszaporodásának és kártétel növekedésének klimatikus háttere (Climatic background of increasing population density and damage of European corn borer). 9. Tiszántúli Növényvédelmi Fórum, Debrecen, pp. 297–305.Google Scholar
  6. Keszthelyi, S. 2004b. Second, late summer flight peak of European corn borer (Ostrinia nubilalis Hbn.) in south area of Hungary. Cereal Res. Comm. 32(3):379–385.Google Scholar
  7. Kozár, F. 1995. Geographical segregation of scale-insects (Homoptera: Coccoidea) on fruit trees and the role of host plant ranges. A. Zool. Acad. Sci. Hung. 41(4):315–325.Google Scholar
  8. Kozár, F. 1997. Insects in a changing world. Acta Phytopath. Entomol. Hung. 32:129–139.Google Scholar
  9. Kozár, F., Nagy Dávid, A. 1985. Néhány rovarfaj váratlan északi terjedése Közép-Európában és a klímaváltozások. (The unexpected northward migration of some species of insect in Central Europe and the climatic changes). 41. Növényvédelmi Tudományos Napok, Budapest, 8.Google Scholar
  10. Mészáros, Z. 1969. Phenological investigations on the Hungarian population on the European corn borer (Ostrinia nubilalis Hbn.) in 1965–67. Acta Phytopath. Entomol. Hung. 4:181–185.Google Scholar
  11. Péczely, Gy. 1979. Éghajlattan (Climatology). Nemzetközi Tankönyvkiadó, Budapest, 336.Google Scholar
  12. Porter, J.H., Parry, M.L., Carter, T.R. 1991. The potential effects of climatic change on agricultural insect pests. Agric. Forest Meteorol. 57:221–240.CrossRefGoogle Scholar
  13. Schwartz, M.V. 1992. Potential effects of global climate change on the biodiversity of plants. Forest. Chron. 68(4):462–471.CrossRefGoogle Scholar
  14. Stollár, A., Dunkel, Z., Kozár, F., Sheble, A.F. 1993. The effects of winter temperature on the migration of insects. Időjárás — Quarterly Journal of the Hungarian Meteorological Service 97:113–120.Google Scholar
  15. Strand, J.F. 2000. Some agrometeorological aspects of pest and disease management for the 21st century. Agric. Forest Meteorol. 103(1–2):73–82.CrossRefGoogle Scholar
  16. Szeőke, K., Gáborjányi, R., Kobza, S., Rátainé, V.R. 1996. A csemegekukorica növényvédelme (Plant protection of sweet corn). Növényvédelem 32(9):459–465.Google Scholar
  17. Székács, A., Fónagy, A., Fekete, G., Szentkirályi, F., Bernáth, B. 2005. Ökotoxikológiai és rovarmonitorozási vizsgálatok az agroökológia szolgálatában (Ecotoxicology and insect monitoring examinations in favour of agroecology). “Agro 21” Füzetek 37:146–159.Google Scholar
  18. Thompson, L.M. 1975. Weather variability, climatic change, and grain production. Science, 253(4188):535–541.CrossRefGoogle Scholar
  19. Vörös, G. 2002. A globális felmelegedés és klímaingadozás hatása néhány rovarkártevőre, valamint leküzdésük lehetősége (Impact of global warming and climatic fluctuation on some pest, and the possibilities for protection). Doktori (PhD) értekezés, Keszthely.Google Scholar
  20. Woodward, F.I., Lomas, M.R. 2004. Vegetation dynamics-simulating responses to climatic change. Biol. Rev. 79(3):643–670.CrossRefGoogle Scholar
  21. Hungarian Meteorological Service (HMS)
  22. Yamamura, K., Kiritani, K. 1998. A simple method to estimate the potential increase in the number of generations under global warming in temperature zones. Appl. Entomol. Zool. 33(2):289–298.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

Authors and Affiliations

  1. 1.FASUniversity of KaposvárKaposvárHungary
  2. 2.Berzsenyi Dániel Teacher’s Training CollegeSzombathelyHungary

Personalised recommendations