Cereal Research Communications

, Volume 36, Issue 2, pp 215–224 | Cite as

Detection of Cereal Viruses in Wheat (Triticum aestivum L.) by Serological and Molecular Methods

  • Z. Áy
  • Z. Kerényi
  • A. Takács
  • M. Papp
  • I. M. Petróczi
  • R. Gáborjányi
  • D. Silhavy
  • J. PaukEmail author
  • Z. Kertész


The reliable monitoring of field virus infections of crop species is important for both farmers and plant breeders. The aim of this study was to detect virus infections of winter wheat in the 2006/2007 season. Twelve well-known winter wheat varieties were sown on two different dates (11 th of October and 3 rd of November 2006). Leaves of two individuals from each genotype were collected on 23rd of April 2007 to detect the virus infections (Barley stripe mosaic virus — BSMV, Barley yellow dwarf virus — BYDV-PAV, Wheat dwarf virus — WDV and Wheat streak mosaic virus — WSMV) after an extra mild autumn- and wintertime. Virus infections were detected by enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). The aphid-transmitted BYDV-PAV was found frequently whereas other viruses were presented very rarely or were not detected. Forty-six per cent of the tested wheat plants proved to be infected by BYDV-PAV in ELISA, while using PCR, the virus infections with BYDV-PAV was found in 58% of the samples. Further, these results suggest that the optimal sowing time is critical in the control of cereal virus diseases, and additionally, that wheat varieties respond to the virus infections differently.


winter wheat genotype virus ELISA PCR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achon, M.A., Serrano, L. 2006. First detection of wheat dwarf virus in barley in Spain associated with an outbreak of barley yellow dwarf. Plant Disease 90:970.CrossRefGoogle Scholar
  2. Balaji, B., Bucholtz, D.B., Anderson, J.M. 2003. Barley yellow dwarf virus and cereal yellow dwarf virus quantification by real-time polymerase chain reaction in resistant and susceptible plants. Phytopathology 93:1386–1392.CrossRefGoogle Scholar
  3. Cisar, G., Brown, C.M., Jedlinski, H. 1982. Effect of fall or spring infection and sources of tolerance of barley yellow dwarf of winter wheat. Crop Sci. 22:474–478.CrossRefGoogle Scholar
  4. Clark, M.F. 1981. Immunosorbent assays in plant pathology. Annual Review of Phytopathology 19:83–106.CrossRefGoogle Scholar
  5. Clark, M.F., Adams, A.N. 1977. Characteristics of the microplate method of enzyme linked immunosorbent assay for detection of plant viruses. J. Gen. Virol. 34:475–483.CrossRefGoogle Scholar
  6. Clover, G., Henry, C. 1999. Detection and discrimination of wheat spindle streak mosaic virus and wheat yellow mosaic virus using multiplex RT-PCR. European Journal of Plant Pathology 105:891–896.CrossRefGoogle Scholar
  7. Fabre, F., Kervarrec, C., Mieuzet, L., Riault, G., Vialatte, A., Jacquot, E. 2003a. Improvement of barley yellow dwarf virus-PAV detection in single aphids using a fluorescent real time RT-PCR. Journal of Virological Methods 110:51–60.CrossRefGoogle Scholar
  8. Fabre, F., Dedryver, C.A., Leterrier, J.L., Plantegenest, M. 2003b. Aphid abundance on cereals in autumn predicts yield losses caused by barley yellow dwarf virus. Phytopathology 93:1217–1222.CrossRefGoogle Scholar
  9. Figueira, A.R., Domier, L.L., D’Arcy, C.J. 1997. Comparison of techniques for detection of barley yellow dwarf virus PAV-IL. Plant Disease 81:1236–1240.CrossRefGoogle Scholar
  10. French, R., Robertson, N.L. 1994. Simplified sample preparation for detection of wheat streak mosaic virus and barley yellow dwarf virus by PCR. Journal of Virological Methods 49:93–99.CrossRefGoogle Scholar
  11. Gáborjányi, R., Bisztrai, Gy., Vacke, J. 1988. Búza törpülés vírus: új gabonapatogén Magyarországon (Wheat dwarf mosaic virus: a new cereal pathogen in Hungary). Növénytermelés 37:495–500.Google Scholar
  12. Gáborjányi, R. 1991. Két új gabonapatogén vírus Magyarországon: a tarackbúza mozaik virus (AgMV) és az angolperje mozaik vírus (RyMV) [Agropyron mosaic virus and ryegrass mosaic virus: two new cereal pathogens in Hungary]. Növénytermelés 40:219–225.Google Scholar
  13. Gáborjányi, R., Szirmai, J., Beczner, L., Nagy, P.D. 1991. Virus diseases of Graminae in Hungary. Acta Phytopath. et Entomol. Hung. 26:83–86.Google Scholar
  14. Gitton, F., Diao, A., Ducrot, O., Antoniw, J.F., Adams, M.J., Maraite, H. 1999. A two-step RT-PCR method for simultaneous detection of soil-borne wheat mosaic virus and wheat spindle streak mosaic virus from France. Plant Pathology 48:635–641.CrossRefGoogle Scholar
  15. Habili, N., McInnes, J.L., Symons, R.H. 1987. Nonradioactive, photobiotin-labelled DNA probes for the routine diagnosis of barley yellow dwarf virus. Journal of Virological Methods 16:225–237.CrossRefGoogle Scholar
  16. Horváth, J., Gáborjányi, R. 1999. Növényvírusok és virológiai vizsgálati módszerek (Plant viruses and virological methods). Mezőgazda, Budapest. pp. 242–268.Google Scholar
  17. Jensen, S.G., D’Arcy, C.J. 1995. Effects of barley yellow dwarf on host plants. In: D’Arcy, C.J., Burnett, P.A. (eds): Barley Yellow Dwarf: 40 years of progress. American Phytopathological Society, St. Paul, MN. pp. 55–74.Google Scholar
  18. Kephart, D., Krueger, S., Grunst, T., Shenoi, H. 2006. Introducing the Maxwell™ 16 Instrument: a simple, robust and flexible tool for DNA purification. Promega Notes 92:20–23.Google Scholar
  19. Kobs, G. 1998. Isolation of RNA from plant, yeast and bacteria. Promega Notes 68:28–29.Google Scholar
  20. Lapierre, H., Signoret, P.A. (eds) 2004. Virus and Virus Diseases of Poaceae (Graminae). INRA, Paris. 857 pp.Google Scholar
  21. Lister, R.M., Rochow, W.F. 1979. Detection of barley yellow dwarf virus by enzyme-linked immunosorbent assay (ELISA). Phytopathology 69:649–654.CrossRefGoogle Scholar
  22. Liu, Y., Sun, B., Wang, X., Zheng, C., Zhou, G. 2007. Three dioxigenin-labelled cDNA probes for specific detection of the natural population of barley yellow dwarf viruses in China by dot-blot hybridization. Journal of Virological Methods 145:22–29.CrossRefGoogle Scholar
  23. Long, E.O., Kindt, T.J. 1988. Antigen recognition overview. Current Opinion in Immunol. 1:71–72.CrossRefGoogle Scholar
  24. Malmstrom, C.M., Shu, R. 2004. Multiplexed RT-PCR for streamlined detection and separation of barley and cereal yellow dwarf viruses. Journal of Virological Methods 120:69–78.CrossRefGoogle Scholar
  25. Mesterházy, Á., Gáborjányi, R., Papp, M., Fónad, P. 2002. Multiple virus infection on wheat in South Hungary. Cereal Res. Comm. 30:329–334.Google Scholar
  26. Milinkó, I., Remete, A. 1984. Fertőz a csíkos mozaik vírus (Barley stripe mosaic virus infects wheat). Magyar Mezőgazdaság 39. 40:8.Google Scholar
  27. Mumford, R., Skelton, A., Metcalfe, E., Walsh, K., Boonham, N. 2004. The reliable detection of barley yellow and mild mosaic viruses using real-time PCR (TaqMan ®). Journal of Virological Methods 117:153–159.CrossRefGoogle Scholar
  28. Nagy, P.D., Gáborjányi, R. 1991. Characterization of barley stripe mosaic virus Hungarian strain. Acta Phytopathol. Hung. 25:187–192.Google Scholar
  29. Nyitrai, Á., Gáborjányi, R. 1988. Wheat streak mosaic virus disease of wheat in Hungary. Cereal Res. Comm. 16:261–263.Google Scholar
  30. Otto, P., Kephart, D., Bitner, R., Huber, S., Volker, K. 1998. Separate isolation of genomic DNA and total RNA from single samples using the SV Total RNA Isolation System. Promega Notes 69:19–23.Google Scholar
  31. Perry, K.L., Kolb, L.F., Sammons, B., Lawson, C., Cisar, G., Ohm, H. 2000. Yield effects of barley yellow dwarf virus in soft red winter wheat. Phytopathology 90:1043–1048.CrossRefGoogle Scholar
  32. Pocsai, E., Barabás, Z. 1985. Wheat streak mosaic virus identifikálása Magyarországon (Identification of Wheat streak mosaic virus in Hungary). Növényvédelem 21:411.Google Scholar
  33. Pocsai, E., Murányi, I., Papp, M., Szunics, L., Tomcsányi, A., Vida, Gy. 2002. Incidence of Barley Yellow Dwarf Viruses in Symptom-Exhibiting Cereal Species. In: Henry, M., McNab, A. (eds): Barley Yellow Dwarf Disease: Recent Advances and Future Strategies. Proc. of Intern. Symp. El Batán, Texaco, Mexico. 1–5 September, 2002. Mexico, CIMMYT, 2002. pp. 45–49.Google Scholar
  34. Pribék, D., Vida, Gy., Veisz, O. 2005. Búzát fertőző vírusok és a vírusok elleni rezisztenciavizsgálatok eredményei Magyarországon (Viruses infecting wheat, and the results of resistance studies in Hungary). Növénytermelés 5–6:477–487.Google Scholar
  35. Ratti, C., Budge, G., Ward, L., Clover, G., Rubies-Autonell, C., Henry, C. 2004. Detection and relative quantitation of soil-borne cereal mosaic virus (SBCMV) and Polymyxa graminis in winter wheat using real-time PCR (TaqMan ®). Journal of Virological Methods 122:95–103.CrossRefGoogle Scholar
  36. Robertson, N.L., French, R., Gray, S.M. 1991. Use of group-specific primers and the polymerase chain reaction for the detection and identification of luteoviruses. Journal of General Virology 72:1473–1477.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Schweitzer, B., Kingsmore, S. 2001. Combining nucleic acid amplification and detection. Curr. Opin. Biotechnol. 12:21–27.CrossRefGoogle Scholar
  38. Sukhacheva, E., Novikov, V., Plaksin, D., Pavlova, I., Ambrosova, S. 1996. Highly sensitive immunoassays for detection of barley stripe mosaic virus and beet necrotic yellow vein virus. Journal of Virological Methods 56:199–207.CrossRefGoogle Scholar
  39. Szirmai, J. 1967. Új vírusbetegség gabonaföldjeinken (New viral disease in the cereal fields). Magyar Mezőgazdaság 22. 20:19.Google Scholar
  40. Szunics, L., Szunics, Lu. 1980. Vírus a búzán (Virus on the wheat). Magyar Mezőgazdaság 35. 35:9.Google Scholar
  41. Takács, A., Kazinczi, G., Horváth, J., Gáborjányi, R. 2008. Cyperus esculentus L. a new host of Brome streak mosaic virus (BrSMV). Journal of Plant Diseases and Protection 21. (in press).Google Scholar
  42. Torrance, L. 1991. Developments in methodology of plant virus detection. European Journal of Plant Pathology 2:21–28.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

Authors and Affiliations

  • Z. Áy
    • 1
  • Z. Kerényi
    • 2
  • A. Takács
    • 3
  • M. Papp
    • 1
  • I. M. Petróczi
    • 1
  • R. Gáborjányi
    • 3
  • D. Silhavy
    • 2
  • J. Pauk
    • 1
    Email author
  • Z. Kertész
    • 1
  1. 1.Cereal Research Non-Profit CompanySzegedHungary
  2. 2.Agricultural Biotechnology CenterGödöllőHungary
  3. 3.Georgikon Faculty of AgricultureUniversity of PannoniaKeszthelyHungary

Personalised recommendations