Advertisement

Cereal Research Communications

, Volume 36, Issue 1, pp 53–64 | Cite as

Combined Effect of Water Stress and Infection with the Necrotrophic Fungal Pathogen Drechslera tritici-repentis on Growth and Antioxidant Activity in Wheat

  • T. JandaEmail author
  • M. Cséplő
  • Cs. Németh
  • Gy. Vida
  • M. Pogány
  • G. Szalai
  • O. Veisz
Open Access
Article

Abstract

Treatment with various concentrations (0, 5, 15 and 20%) of PEG was used to simulate water stress, followed by inoculation with Drechslera tritici-repentis (DTR) at two different points of time (6 and 72 h after the PEG treatment) in two DTR resistant (M-3 and Mv Magvas) and two sensitive (Bezostaya 1 and Glenlea) wheat varieties. The reduction in biomass production due to the PEG treatments was more pronounced in the shoots than in the roots. While in the case of Bezostaya 1 5% PEG reduced the level of infection, 20% PEG treatment lowered the tolerance level of M-3. DTR infection may be more efficient in inducing antioxidative defence systems than water stress. However, there was no direct correlation between the activity of the individual antioxidant enzymes and the drought or DTR tolerance of wheat plants.

Keywords

abiotic stress antioxidant enzymes biotic stress drought tan spot Triticum aestivum L. 

References

  1. Ádám, A., Bestwick, C.S., Barna, B., Mansfield, J.W. 1995. Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. phaseolica. Planta 197:240–249.CrossRefGoogle Scholar
  2. Blum, A. 1988. Plant Breeding for Stress Environments. CRC Press, Boca Raton, pp. 15–24.Google Scholar
  3. Bridger, G.M., Yang, W., Falk, D.E., McKersie, B.D. 1994. Cold acclimation increases tolerance of activated oxygen in winter cereals. J. Plant Physiol. 144:235–240.CrossRefGoogle Scholar
  4. Danna, C.H., Bartoli, C.G., Sacco, F., Ingala, L.R., Santa-María, G.E., Guiamet, J.J., Ugalde, R.A. 2003. Thylakoid-bound ascorbate peroxidase mutant exhibits impaired electron transport and photosynthetic activity. Plant Physiol. 132:2116–2125.CrossRefGoogle Scholar
  5. De Wolf, E.D., Effertz, R.J., Ali, S., Francl, L.J. 1998. Vistas of tan spot research. Canadian J. Plant Pathol. 20:349–444.CrossRefGoogle Scholar
  6. Duveiller, E., Dubin, H.J., Reeves, J., McNab, A. 1997. Helminthosporium blights of wheat: spot blotch and tan spot. Proceedings of an International Workshop held at CIMMYT, El Batan, Mexico.Google Scholar
  7. El-Tayeb, M.A. 2006. Differential response of two Vicia faba cultivars to drought: growth, pigments, lipid peroxidation, organic solutes, catalase and peroxidase activity. Acta Agron. Hung. 54:25–37.CrossRefGoogle Scholar
  8. Gaudet, D.A., Laroche, A., Frick, M., Huel, R., Puchalski, B. 2003. Plant development affects the cold-induced expression of plant defence-related transcripts in winter wheat. Physiol. Mol. Plant Pathol. 62:175–184.CrossRefGoogle Scholar
  9. Hoagland, D.R., Arnon, D.I. 1950. The water-culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. 347:1036–1043.Google Scholar
  10. Hoffmann, B., Burucs, Z. 2005. Adaptation of wheat (Triticum aestivum L.) genotypes and related species to water deficiency. Cereal Res. Comm. 33:681–687.CrossRefGoogle Scholar
  11. Janda, T., Szalai, G., Tari, I., Páldi, E. 1999. Hydroponic treatment with salicylic acid decreases the effect of chilling injury in maize (Zea mays L.) plants. Planta 208:175–180.CrossRefGoogle Scholar
  12. Janda, T., Szalai, G., Rios-Gonzalez, K., Veisz, O., Páldi, E. 2003. Comparative study of frost tolerance and antioxidant activity in cereals. Plant Sci. 164:301–306.CrossRefGoogle Scholar
  13. Janda, T., Kósa, E., Pintér, J., Szalai, G., Marton, C.L., Páldi, E. 2005. Antioxidant activity and chilling tolerance of young maize inbred lines and their hybrids. Cereal Res. Comm. 33:541–548.CrossRefGoogle Scholar
  14. Janda, T., Szalai, G., Leskó, K., Yordanova, R., Apostol, S., Popova, L.P. 2007. Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochemistry 68:1674–1682.CrossRefGoogle Scholar
  15. Kocsy, G., Galiba, G., Brunold, C. 2001. Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiol. Plant. 113:158–164.CrossRefGoogle Scholar
  16. Kovács, G., Sorvari, S., Scott, P., Toldi, O. 2007. Pyrophosphate:fructose 6-phosphate 1-phosphotransferase is involved in the mobilization of sugar reserves in the taproots of cold- and drought-stressed carrot plants. Acta Agron. Hung. 55:71–82.CrossRefGoogle Scholar
  17. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405–410.CrossRefGoogle Scholar
  18. Murray, T.D., Parry, D.W., Cattlin, N.D. 1998. A Colour Handbook of Diseases of Small Grain Cereal Crops. Manson Publishing Ltd, London.Google Scholar
  19. Sanchez-Urdaneta, A.B., Pena-Valdivia, C.B., Trejo, C., Aguirre, J.R., Cardenas, E. 2005. Root growth and proline content in drought sensitive and tolerant maize (Zea mays L.) seedlings under different water potentials. Cereal Res. Comm. 33:697–704.CrossRefGoogle Scholar
  20. Sarker, A.M., Rahman, M.S., Paul, N.K. 1999. Effect of soil moisture on relative leaf water content, chlorophyll, proline and sugar accumulation in wheat. J. Agron. Crop Sci. 183:225–229.CrossRefGoogle Scholar
  21. Smith, I.K., Vierheller, T.L., Thorne, C.A. 1988. Assay of glutathione reductase in crude tissue homogenates using 5,5-dithiobis(2-nitrobenzoic acid). Anal. Biochem. 175:408–413.CrossRefGoogle Scholar
  22. Stubbs, R.W., Prescot, J.M., Sarri, E.E., Dubin, H.J. 1986. Cereal Dis. Method. Manual. CIMMYT, Mexico, pp. 1–46.Google Scholar
  23. Yordanov, I., Velikova, V., Tsonev, T. 2000. Plant responses to drought, acclimation, and stress tolerance. Photosyntetica 38:171–186.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • T. Janda
    • 1
    Email author
  • M. Cséplő
    • 1
  • Cs. Németh
    • 1
  • Gy. Vida
    • 1
  • M. Pogány
    • 2
  • G. Szalai
    • 1
  • O. Veisz
    • 1
  1. 1.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary
  2. 2.Plant Protection Institute of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations