Advertisement

Cereal Research Communications

, Volume 36, Issue 1, pp 147–155 | Cite as

Macro- and Microelement Contents of Blue and Red Kernel Corns

  • Z. BódiEmail author
  • P. Pepó
  • A. Kovács
  • É. Széles
  • Z. Győri
Open Access
Article

Abstract

The role of special corns in human diets is increasing as a result of their favourable nutritional values. Little is known about mineral contents of different red and blue corns, although they may help to inhibit deficiency diseases mainly in the developing countries. During this study, mineral contents (15 elements) of 3 red and 9 blue corn varieties were examined with ICP-OES and ICP-MS. Highest contents of macroelements were as follows: P (3859.5±562.1 mg kg −1), K (4325.0±469.5 mg kg −1) and Mg (1450.0±104.6 mg kg −1) in the variety Black Mexican, S (1555.0±128.6 mg kg −1) in Santo Domingo Blue. In case of microelements, iron, zinc and selenium were highlighted. Except one genotype, iron contents were above 30 mg kg −1. Blaumais, Hopi Turquoise and Hopi Blue contained more than 40 mg kg −1 (41.0–46.3), which were above values published in the literature (10.0 mg kg −1 in average). For zinc, we measured 15.2–31.5 mg kg −1. Selenium contents (0.1–0.2 mg kg −1) were also higher than in the literature (0.08 mg kg −1). Plant selection could utilize variability of special element contents in enhancing these phenomena.

Keywords

blue and red corn (Zea mays L.) macro- and microelement content iron zinc selenium chromium 

References

  1. Adriano, D.C. 1986. Sources, essentialities and biogeochemical circulations of microelements (in Hungarian). Kémiai Közlemények 65:315–343.Google Scholar
  2. Anke, M., Röhrig, B., Schäfer, U., Müller, R., Latzel, F. 2005. Zinc in the food: biological importance. Acta Medica Lituanica 12:50–58.Google Scholar
  3. Beilstein, M.A., Whanger, P.D., Yang, G.Q. 1991. Chemical forms of selenium in corn and rice grown in a high selenium area of China. Biomed. Environ. Sci. 4:392–398.PubMedGoogle Scholar
  4. Bergmann, W. 1988. Ernährungsstörungen bei Kulturpflanzen. VEB. Gustav Fischer Verlag. Jena, pp. 304–314.Google Scholar
  5. Brkic, D., Šicih, D., Zdunih, Z., Jambrovih, A., Ledencan, T. Kovacevih, V., Kádár, I. 2003. Combining abilities of corn-belt inbred lines of maize for mineral content in grain. Maydica 48: 293–297.Google Scholar
  6. Csanádi, E. 2004. Magnesium — not only for ruminants (in Hungarian). Kemira GrowHow 4:15–16.Google Scholar
  7. Csathó, P. 1994. Heavy metal contamination of the environment and agricultural production. MTA. TAKI. Budapest, pp. 1–176.Google Scholar
  8. Dickerson, G.W. 2003. Nutritional analysis of New Mexico blue corn and dent corn kernels. College of Agriculture and Home Economics. New Mexico State University. https://doi.org/www.cahe.nmsu.edu/pubs/_h/h-233.htm
  9. Garcia, W.J., Blessin, C.W., Inglett, G.E. 1974. Heavy metals in whole kernel dent corn determined by atomic absorption. Cereal Chem. 51:788–797.Google Scholar
  10. Graham, R.D., Senadhira, D., Beebe, C., Iglesias, C., Monasterio, I. 1999. Breeding for mineral density in edible portion of staple food crops: conventional approaches. Field Crops Research 60:57–80.CrossRefGoogle Scholar
  11. Győri, Z., Győriné Mile, I. 2002. A kukorica minősége és feldolgozása (Corn processing and quality). Szaktudás Kiadó Ház, Budapest, pp. 25–28.Google Scholar
  12. Hinesley, T.D., Alexander, D.E., Ziegler, E.L., Barett, G.L. 1978. Zinc and cadmium accumulation by corn inbreds grown on sludge amended soil. Agron. J. 70:425–428.CrossRefGoogle Scholar
  13. Kádár, I., Koncz, J., Gulyás, F. 2000a. Effect of microelement loads on the composition of maize and the readily available soil nutrient content on a calcareous chernozem (in Hungarian with English abstract). Agrokémia és Talajtan 49:205–220.Google Scholar
  14. Kádár, I., Radics, L., Bana, K-né. 2000b. Effect of microelement loads on a maize stand on calcareous chernozem soil (in Hungarian with English abstract). Agrokémia és Talajtan 49:181–204.Google Scholar
  15. Kovács, B., Dániel, P., Győri, Z., Loch, J., Prokisch, J. 1998. Studies on parameters of inductively coupled plasma spectrometer. Communications in Soil Science and Plant Analysis 29: 2035–2054.CrossRefGoogle Scholar
  16. Kovács, G. 2000. Blue corn-past, present and prospects of the cultivation of an ancient form of maize (in Hungarian with English abstract). Növénytermelés 49:421–429.Google Scholar
  17. Kovács, B., Győri, Z., Prokisch, J., Loch, J., Daniel, P. 1996. A study of plant sample preparation and inductively coupled plasma emission spectrometry parameters. Communications in Soil Science and Plant Analysis 27:1177–1198.CrossRefGoogle Scholar
  18. Loy, D.D., Wright, N.K. 2003. Nutritional properties and feeding value of corn and its by-products. In: White, J.P., Johnson, A.L. (eds), Corn Chemistry and Technology. AACC, St. Paul, Minnesota, pp. 571–603.Google Scholar
  19. Pepó, P., Tóth, Sz. 2006. Study on mineral contents of maize lines and hybrids (Zea mays L.) in diallel system (in Hungarian with English abstract). Növénytermelés 55:27–35.Google Scholar
  20. Pepó, P., Tóth, Sz., Oskolás, H. 2004. Change of nutrient content of maize (Zea mays L.) during vegetation period (in Hungarian with English abstract). Növénytermelés 53:317–327.Google Scholar
  21. Sárvári, M., Győri, Z. 1982. Changes in yield and quality of maize grown in monoculture and in crop rotation using various levels of nutrient supply (in Hungarian with English abstract). Növénytermelés 31:177–184.Google Scholar
  22. Watson, A.S. 2003. Description, development, structure, and composition of the corn kernel. In: White, J.P., Johnson, A.L. (eds), Corn Chemistry and Technology. AACC, St. Paul, Minnesota, pp. 86–87.Google Scholar
  23. Welch, M.R., Graham, D.R. 2002. Breeding crops for enhanced micronutrient content. Plant and Soil 245:205–214.CrossRefGoogle Scholar
  24. Yip, R., Scanlon, K. 1994. The burden of malnutrition: A population perspective. J. Nutr. 124: 2043–2046.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Z. Bódi
    • 1
    Email author
  • P. Pepó
    • 1
  • A. Kovács
    • 1
  • É. Széles
    • 2
  • Z. Győri
    • 2
  1. 1.Department of Horticulture and Plant BiotechnologyUniversity of Debrecen, Centre of Agricultural SciencesDebrecenHungary
  2. 2.Institute of Food Science, Quality Assurance and MicrobiologyUniversity of Debrecen, Centre of Agricultural SciencesDebrecenHungary

Personalised recommendations