Cereal Research Communications

, Volume 35, Issue 3, pp 1527–1537 | Cite as

Optimisation of the Weed Sampling System from an Economic Point of View on Wheat (Triticum Aestivum) Stubble

  • L. BarkasziEmail author
  • A. Arutyunjan
  • K. Takács-György


It has been proved that because of the different past of the parcels regarding their soil, agronomical and technological parameters, weed sampling results may not be generalised. Therefore it is necessary to study those solutions how to determine on an acceptable confidence level a parcel’s weed infestation with optimised sampling techniques.

For studying the question we have delimited on wheat stubble a total sample area of 36×54 metres (using it as reference) and divided it into 2×2 cells giving a total of 486 sample cells. Then we surveyed the weed infestation and GPS recorded the location of each cell.

We have analysed the weed infestation data with mathematical and statistical methods comparing the results of cells with each other and with the total sample area. We found that in several cases of different sample cells weed infestation displayed a diverse picture. This way sampling of weeds is extremely difficult.

We found close relation between relative frequency of weeds and sampling accuracy. Therefore sampling is reliable only for surveying the frequent weeds in a parcel, while more rarely found weeds (e.g. spots of perennials) are to be scouted only by means of going over the parcel and GPS recording them. Otherwise, in the case of a traditional sampling process, the number of sampling cells required for acceptable reliability is unnecessarily high.

Consequently, it is necessary to further study the economic and cost efficiency aspects of the needed weed sample density from the point of view of reasonable sample density, accuracy and optimal yield.


weed coverage relative frequency optimisation of weed sampling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barosso, J., Fernandez-Quintanilla, C., Maxwell, B.D., Rew, L.J. 2004. Simulating the effects of weed spatial pattern and resolution of mapping and spraying on economics of site-specific management. Weed Research 44:460–468.CrossRefGoogle Scholar
  2. Kis, S., Takács-György, K. 2005. Modelling ecnomic effects of chemical use. Reduction regarding to multifunctional role of agriculture. Stowarzyszenie. Ekonomistów Rolnictva i Agrobizneszu. Roznicki Naukowe. Tom VII. Annals 6:58–64.Google Scholar
  3. Lamastus, E.F., Shaw, D.R. 2005. Comparison of different sampling scales to estimate weed populations in three soybean fields. Precision Agriculture 6:271–280.CrossRefGoogle Scholar
  4. Maxwell, B.D., Luschei, E.C. 2005. Justification for site-specific weed management based on ecology and economics. Weed Science 53:221–227.CrossRefGoogle Scholar
  5. Németh, I., Sárfalvi, B. 1998. Szőlőben és gabonában végzett gyomfelvételezések módszertani értékelése (Methodological analysis of weed survey techniques in vines and in cereals). Növényvédelem 34:15–22.Google Scholar
  6. Reisinger, P., Kőmíves, T., Nagy, S. 2003. A gyomfelvételezés mintasűrűségére vonatkozó vizsgálatok a precíziós gyomszabályozás tervezéséhez (Studies focused on sample density in weed sampling related to the planning of precision weed management). Növényvédelem 39:413–419.Google Scholar
  7. Reisinger, P. 2001. Weed surveys on farmlands in Hungary (1947–2000). Magyar Gyomkutatás és Technológia 2:3–15.Google Scholar
  8. Reisinger, P. 1977. A gyomfelvételezési módszerek összehasonlító vizsgálata (Comparative analysis of weed surveying methods). Növényvédelem 13:359–361.Google Scholar
  9. Székely, Cs., Kovács, A., Györök, B. 2000. The practice of precious farming from an economic point of view. Gazdálkodás. English Special Edition 1:56–65.Google Scholar
  10. Takács-György, K. 2003. Reduce the chemical use in plant production — How to optimize pests? 14th IFMA Congress, Perth. Proceedings. Part 1, pp. 783–791.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

Authors and Affiliations

  • L. Barkaszi
    • 1
    Email author
  • A. Arutyunjan
    • 2
  • K. Takács-György
    • 2
  1. 1.Department of Farm AnalysisAgricultural Economics Research InstituteBudapestHungary
  2. 2.Institute for Farm Management and OrganisationSzent István UniversityGödöllőHungary

Personalised recommendations