Identification and Mapping Quantitative Trait Loci for Stem Reserve Mobilisation in Wheat (Triticum aestivum L.)

Abstract

Quantitative trait loci (QTL) analysis was carried out with a set of 114 recombinant inbred lines (RILs) from the International Triticeae Mapping Initiative (ITMI) population of ‘W7984’ × ‘Opata 85’ to identify genomic regions controlling traits related to post-anthesis drought tolerance of wheat (Triticum aestivum L.). In two experiments performed in Gatersleben in 2001 and 2003, the amount stem reserves mobilisation was estimated by measuring of changes in 1000-grain weight after chemical desiccation treatment. QTLs for stem reserves mobilisation (Srm) were mapped on chromosomes 2D, 5D and 7D. The mapping positions obtained in the present investigation are discussed with respect to studies on drought tolerance performed in wheat previously. QTLs for drought tolerance preferentially appeared in homoeologous regions at distal parts of the group 7 chromosomes.

References

  1. Balint, A.F., Röder, M.S., Hell, R., Gabor, G., Börner, A. 2007. Mapping of QTLs affecting copper tolerance and the Cu, Fe, Mn and Zn contents in the shoots of wheat seedlings. Biol. Plant. 51:129–134.

    CAS  Article  Google Scholar 

  2. Blum, A. 1996. Crop responses to drought and the interpretation of adaptation. Plant Growth Regul. 20:135–148.

    CAS  Article  Google Scholar 

  3. Blum, A., Mayer, J., Golan, G. 1983a. Chemical desiccation of wheat plants as a simulator of post-anthesis stress. II. Relations to drought stress. Field Crops Res. 6:149–155.

    Article  Google Scholar 

  4. Blum, A., Poyarkova, H., Golan, G., Mayer, J. 1983b. Chemical desiccation of wheat plants as a simulator of post-anthesis stress. I. Effects on translocation and kernel growth. Field Crops Res. 6:51–58.

    Article  Google Scholar 

  5. Blum, A., Sinmena, B., Mayer, J., Golan, G., Shpiler, L. 1994. Stem reserve mobilisation supports wheat-grain filling under heat stress. Aust. J. Plant Physiol. 21:771–781.

    Google Scholar 

  6. Börner, A., Schumann, E., Fürste, A., Cöster, H., Leithold, B., Röder, M.S., Weber, W.E. 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 105:921–936.

    Article  Google Scholar 

  7. Boyer, J.S. 1982. Plant productivity and environment. Science 218:443–448.

    CAS  Article  Google Scholar 

  8. Dobrovolskaya, O., Pshenichnikova, T.A., Lohwasser, U., Röder, M.S., Börner, A. 2007. Molecular mapping of genes determining hairy leaf character in wheat with respect to other species of the Triticeae. Euphytica (in press).

  9. Faris, J.D., Anderson, J.A., Francl, L.J., Jordahl, J.G. 1996. RFLP mapping of tan spot resistance genes in wheat. In: McGuire, P.E, Qualset, C.O. (eds), Proc 5th and 6th Public Workshop Int Triticeae Mapping Initiative, Genetic Resources Conservation Program, Division of Agriculture and Natural Resources, University of California, Davis, pp. 179.

    Google Scholar 

  10. Groos, C., Robert, N., Bervas, E., Charmet, G. 2003. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor. Appl. Genet. 106:1032–1040.

    CAS  Article  Google Scholar 

  11. Huang, X.Q., Cöster, H., Ganal, M.W., Röder, M.S. 2003. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor. Appl. Genet. 106:1379–1389.

    CAS  Article  Google Scholar 

  12. Khlestkina, E.K., Pestsova, E.G., Röder, M.S., Börner, A. 2002. Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.). Theor. Appl. Genet. 104:632–637.

    CAS  Article  Google Scholar 

  13. Landjeva, S., Neumann, K., Lohwasser, U., Börner, A. 2007. Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biol. Plant (in press).

  14. Lohwasser, U., Röder, M.S., Börner, A. 2005. QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.). Euphytica 143:247–249.

    CAS  Article  Google Scholar 

  15. Marino, C.L., Nelson, J.C., Lu, Y.H., Sorrells, M.E., Leroy, P., Tuleen, N.A., Lopes, C.R., Hart, G.E. 1996. Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell.). Genome 39:359–366.

    CAS  Article  Google Scholar 

  16. McIntosh, R.A., Hart, G.E., Devos, K.M., Gale, M.D., Rogers, W.J. 1998. Catalogue of gene symbols for wheat. In: Slinkard, A.E. (ed.), Proc 9th Int Wheat Genet Symp, vol. 5, University Extension Press, University of Saskatchewan, Saskatoon, pp. 1–236.

    Google Scholar 

  17. Nelson, J.C. 1997. QGENE: software for mapping based genomic analysis and breeding. Mol. Breed. 3:239–245.

    CAS  Article  Google Scholar 

  18. Nelson, J.C., Autrique, J.E., Fuentes-Davila, G., Sorrells, M.E. 1998. Chromosomal location of genes for resistance to Karnal bunt in wheat. Crop Sci. 38:231–236.

    CAS  Article  Google Scholar 

  19. Nelson, J.C., Singh, R.P., Autrique, J.E., Sorrells, M.E. 1997. Mapping genes conferring and suppressing leaf rust resistance in wheat. Crop Sci. 37:1928–1935.

    CAS  Article  Google Scholar 

  20. Nelson, J.C., van Deynze, A.E., Autrique, E., Sorrells, M.E., Lu, Y.H., Merlino, M., Atkinson, M., Leroy, P. 1995a. Molecular mapping of wheat. Homoeologous group 2. Genome 38:516–524.

    CAS  Article  Google Scholar 

  21. Nelson, J.C., van Deynze, A.E., Autrique, E., Sorrells, M.E., Lu, Y.H., Negre, S., Bernard, M., Leroy, P. 1995b. Molecular mapping of wheat. Homoeologous group 3. Genome 38:525–533.

    CAS  Article  Google Scholar 

  22. Nelson, J.C., Sorrells, M.E., van Deynze, A.E., Lu, Y.H., Atkinson, M., Bernard, M., Leroy, P., Faris, J.D., Anderson, J.A. 1995c. Molecular mapping of wheat: Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nicholas, M.E., Turner, N.C. 1993. Use of chemical desiccants and senescing agent to select wheat lines maintaining stable grain size during post anthesis drought. Field Crops Res. 31:155–171.

    Article  Google Scholar 

  24. Pestsova, E., Ganal, M.W., Röder, M.S. 2000. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697.

    CAS  Article  Google Scholar 

  25. Quarrie, S.A., Steed, A., Calestani, C., Semikhodskii, A., Lebreton, C., Chinoy, C., Steele, N., Pljevljakusic, D., Waterman, E., Weyen, J., Schondelmaier, J., Habash, D.Z., Farmer, P., Saker, L., Clarkson, D.T., Abugalieva, A., Yessimbekova, M., Turuspekov, Y., Abugalieva, S., Tuberosa, R., Sanguineti, M-C., Hollington, P.A., Aragués, R., Royo, A., Dodig, D. 2005. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor. Appl. Genet. 110:865–880.

    CAS  Article  Google Scholar 

  26. Regan, K.L., Whan, B.R., Turner, N.C. 1993. Evaluation of chemical desiccation as a selection technique for drought resistance in a dryland wheat breeding program. Aust. J. Agric. Res. 44:1683–1691.

    CAS  Article  Google Scholar 

  27. Reynolds, M.P., Skovmand, B., Trethowan, R.M., Pfeiffer, W.H. 2000. Evaluating a conceptual model for drought tolerance. In: Ribaut, J.M., Poland, D. (eds), Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-Limited Environments. Mexico, DF (Mexico), CIMMYT, pp. 49–53.

    Google Scholar 

  28. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M-H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149:2007–2023.

    PubMed  PubMed Central  Google Scholar 

  29. Simon, M.R., Ayala, F.M., Cordo, C.A., Röder, M.S., Börner, A. 2004. Molecular mapping of quantitative trait loci determining resistance to septoria tritici blotch (Mycosphaerella graminicola) in wheat. Euphytica 138:41–48.

    CAS  Article  Google Scholar 

  30. Singh, R.P., Nelson, J.C., Sorrells, M.E. 2000. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci. 40:1148–1155.

    CAS  Article  Google Scholar 

  31. Sourdille, P., Perretant, M.R., Charmet, G., Leroy, P., Gautier, M.F., Joudrier, P., Nelson, J.C., Sorrells, M.E., Bernard, M. 1996. Linkage between RFLP markers and genes affecting kernel hardiness in wheat. Theor. Appl. Genet. 93:580–586.

    CAS  Article  Google Scholar 

  32. van Deynze, A.E., Dubcovsky, J., Gill, K.S., Nelson, J.C., Sorrells, M.E., Dvorak, J., Gill, B.S., Lagudah, E.S., McCouch, S.R., Appels, R. 1995. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Börner.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Salem, K.F.M., Röder, M.S. & Börner, A. Identification and Mapping Quantitative Trait Loci for Stem Reserve Mobilisation in Wheat (Triticum aestivum L.). CEREAL RESEARCH COMMUNICATIONS 35, 1367–1374 (2007). https://doi.org/10.1556/CRC.35.2007.3.1

Download citation

Keywords

  • chemical desiccation
  • genetic mapping
  • quantitative trait loci (QTLs)
  • post-anthesis drought tolerance
  • stem reserves mobilisation
  • wheat