Cereal Research Communications

, Volume 35, Issue 1, pp 23–30 | Cite as

Genetic Mapping of Quantitative Trait Loci Associated with Fiber and Lignin Content in Rice

  • J. S. BaoEmail author
  • L. Jin
  • Y. Shen
  • J. K. Xie


Rice straw represents a significant energy source for ruminant animals, and fibers and lignin contents of rice straw are negatively related to intake potential of forages. For improvement of the digestibility of rice straw, it is necessary to understand the genetic basis of the related traits. In present study, mapping of quantitative trait loci (QTL) for acid detergent fiber (ADF), neutral detergent fiber (NDF), and acid detergent lignin (ADL) was carried out using a doubled haploid (DH) population derived from a cross between indica variety Zai-Ye-Qing 8 (ZYQ8) and japonica variety Jing-Xi 17 (JX17). The results indicated that all three parameters were continuously distributed among the DH lines, but many DH lines showed transgressive segregation for all the three traits. A total of three main-effect QTLs were identified for ADF and ADL, two of which, qADF-9 and qADL-9, shared the same region on chromosome 9. These two main-effect QTLs explained more than 20% of the total phenotypic variations, whereas the other QTL, qADF-5, explained 12.8% of the total phenotypic variation for ADF. In addition, another two epistatic QTLs, qADF-2 and qADF-3 could explain 17.6% of the total variations. Thus, we concluded that both main-effects and epistatic QTLs were important in controlling the genetic basis of ADF.


rice straw acid detergent fiber neutral detergent fiber lignin cell wall component QTL 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agbagla-Dohnani, A., Noziere, P., Clement, G., Doreau, M. 2001. In sacco degradability, chemical and morphological composition of 15 varieties of European rice straw. Anim. Feed Sci. Technol. 94:15–27.CrossRefGoogle Scholar
  2. Aman, P. 1993. Composition and structure of cell wall polysaccharides in forage. In: Jung, H.G., Buxton, D.R., Hatfield, R.D., Ralph, J. (eds). Forage Cell Wall Structure and Digestibility. ASA-CSSA-SSSA, Madison, pp. 183–196.Google Scholar
  3. Bao, J.S., Zheng, X.W., Xia, Y.W., He, P., Shu, Q.Y., Lu, X., Chen, Y., Zhu, L.H. 2000. QTL mapping for the paste viscosity characteristics in rice (Oryza sativa L.). Theor. Appl. Genet. 100:280–284.CrossRefGoogle Scholar
  4. Bao, J.S., Sun, M., Zhu, L.H., Corke, H. 2004. Analysis of quantitative trait loci for some some starch properties in rice (Oryza sativa L.): thermal properties, gel texture, swelling volume. J. Cereal Sci. 39:379–385.CrossRefGoogle Scholar
  5. Cardinal, A.J., Lee, M., Moore, K.J. 2003. Genetic mapping and analysis of quantitative trait loci affecting fiber and lignin content in maize. Theor. Appl. Genet. 106:866–874.CrossRefGoogle Scholar
  6. Grando, S., Baum, M., Ceccarelli, S., Goodchild, A., El-Haramein, F.L., Jahoor, A., Backes, G. 2005. QTL for straw quality characteristics identified in recombinant inbred lines of a Hordeum vulgare × H. spontaneum cross in a Mediterranean environment. Theor. Appl. Genet. 110: 688–695.CrossRefGoogle Scholar
  7. Kong, X.L., Xie, J.K., Wu, X.L., Huang, Y.J., Bao, J.S. 2005. Rapid prediction of acid detergent fiber, neutral detergent fiber, and acid detergent lignin of rice materials by near-infrared spectroscopy. J. Agric. Food Chem. 53:2843–2848.CrossRefGoogle Scholar
  8. Krakowsky, M.D., Lee, M., Coors, J.G. 2005. Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (Zea mays L.) I: stalk tissue. Theor. Appl. Genet. 111:337–346.CrossRefGoogle Scholar
  9. Krakowsky, M.D., Lee, M., Coor, J.G. 2006. Quantitative trait loci for cell wall components in recombinant inbred lines of maize (Zea mays L.) II: leaf sheath tissue. Theor. Appl. Genet. 112:717–726.CrossRefGoogle Scholar
  10. Lu, C., Shen, L., Tan, Z., Xu, Y., He, P., Chen, Y., Zhu, L. 1996. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor. Appl. Genet. 93:1211–1217.CrossRefGoogle Scholar
  11. Mechin, V., Argillier, O., Hebert, Y., Guingo, E., Moreau, L., Charcosset, A., Barriere, Y. 2001. Genetic analysis and QTL mapping of cell wall digestibility and lignification in silage maize. Crop Sci. 41:690–697.CrossRefGoogle Scholar
  12. McCouch, S.R., Cho, Y.G., Yano, M., Paul, E., Blinstrub, M. 1997. Report on QTL nomenclature. Rice Genet Newsletter 14:11–13.Google Scholar
  13. Putun, A.E., Apaydin, E., Putun, E. 2004. Rice straw as a bio-oil source via pyrolysis and steam pyrolysis. Energy 29:2171–2180.CrossRefGoogle Scholar
  14. van Soest, P.J. 1994. Nutritional Ecology of the Ruminant, 2nd edn. Cornell University Press, Ithaca.Google Scholar
  15. Wang, D.L., Zhu, J., Li, Z.K., Paterson, A.H. 1999. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor. Appl. Genet. 99:1255–1264.CrossRefGoogle Scholar
  16. Xie, J.K., Wu, X.L., Jin, L., Wan, Y., Huang, Y.J., Bao, J.S. 2006. Identification of SSR markers for acid detergent fiber in rice straw by bulked segregant analysis. J. Agric. Food. Chem. 54:7616–7620.CrossRefGoogle Scholar
  17. Xu, Y.B., Shen, L.S., McCouch, S.R., Zhu, L.H. 1998. Extension of the rice DH population genetic map with microsatellite markers. Chinese Sci. Bull. 43:149–153.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

Authors and Affiliations

  1. 1.Institute of Nuclear Agricultural Sciences, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
  2. 2.Rice Research InstituteJiangxi Academy of Agricultural ScienceNanchangChina

Personalised recommendations