Induction of chromosome rearrangements in a 4H(4D) wheat-barley substitution using a wheat line containing a Ph suppressor gene

An Erratum to this article was published on 01 March 2007

This article has been updated

Summary/Abstract

The aim of the experiments was to develop translocation lines by inducing homoeologous chromosome pairing in a 4H(4D) wheat-barley substitution line previously developed in Martonvásár. It was hoped to incorporate various segments of the barley 4H chromosome from the 4H(4D) substitution into wheat. Observations were made on the frequency with which wheat-barley translocations appeared in the F2 progeny grains from a cross between the line CO4-1, which carries the Ph suppressor gene from Aegilops speltoides and thus induces a high level of homoeologous chromosome pairing, and the 4H(4D) wheat-barley substitution line, and on which chromosome segments were involved in the translocations. The translocations were identified by means of genomic in situ hybridisation. Of the 117 plants examined, three (2.4 %) were found to contain translocations. A total of four translocations were observed, as one plant contained two different translocations. The translocations consisted of one centric fusion, two dicentric translocations and one acrocentric chromosome. Plants carrying translocations were raised in the phytotron and the selection of homozygous translocation lines was commenced from the F3 progeny grains.

Change history

  • 30 December 2007

    The following supplement should have been added to the paper by Sepsi et al.: “Induction of Chromosome Rearrangements in a 4H(4D) Wheat-Barley Substitution Using a Wheat Line Containing a Ph Suppressor Gene” published in Cereal Research Communications 34(4):1215–1222.

References

  1. Chen, P.D. — Tsujimoto, H. — Gill, B.S.: 1994. Transfer of Ph1 genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor. Appl. Genet., 88:97–101.

    CAS  Article  Google Scholar 

  2. Devos, K. M. — Gale, M. D.: 2000. Genome relationships: the grass model in current research. Plant Cell, 12: 637–646.

    CAS  Article  Google Scholar 

  3. Dvorak, J.: 1972. Genetic variability in Aegilops speltoides affecting homoeologous pairing in wheat. Can. J. Cytol., 14: 371–380.

    Article  Google Scholar 

  4. Fedak, G.: 1997. Increased homoeologous chromosome pairing in Hordeum vulgare × Triticum aestivum hybrids. Nature, 266: 529–530.

    Article  Google Scholar 

  5. Feldman, M.: 1988. Cytogenetic and molecular approaches to alien gene transfer in wheat. In: Miller, T.E., Koebner, R.M.D. (eds.), Proc. 7th International Wheat Genetics Symposium, Cambridge, pp 23–32.

  6. Friebe, B. — Jiang, J. — Raupp, W. J. — McIntosh, R.A. — Gill, B.S.: 1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 91: 59–87.

    Article  Google Scholar 

  7. Islam, A. K. M. R. — Shepherd, K.W. — Sparrow, D. H. B.: 1978. Production and characterization of wheat-barley addition lines. In: S. Ramunujam (ed.), Proc. 5th Int. Wheat Genet. Symp., New Delhi, India, pp. 356–371.

  8. Islam, A. K. M. R. — Shepherd, K. W. — Sparrow, D. H. B.: 1981. Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity, 46: 160–174.

    Article  Google Scholar 

  9. Islam, A. K. M. R. — Shepherd, K. W.: 1992. Production of wheat-barley recombinant chromosomes through induced homoeologous pairing. 1. Isolation of recombinants involving barley arms 3HL and 6HL. Theor. Appl. Genet., 83: 489–494.

    CAS  Article  Google Scholar 

  10. Jauhar, P. P. — Chibbar, R. N.: 1999. Chromosome-mediated and direct gene transfers in wheat. Genome, 42: 570–583.

    CAS  Article  Google Scholar 

  11. Kruse, A.: 1973. Hordeum × Triticum hybrids. Hereditas, 73: 157–161.

    Article  Google Scholar 

  12. Kreis, M. — Williamson, M. S. — Shewry, P. R. — Sharp, P. — Gale, M.: 1988. Identification of a second locus encoding β-amylase on chromosome 2 of barley. Genet. Res., Camb., 51: 13–16.

    CAS  Article  Google Scholar 

  13. Le, H. T. — Armstrong, K. C. — Miki, B.: 1989. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol. Biol. Rep., 7: 150–158.

    Article  Google Scholar 

  14. Linc, G. — Friebe, B. — Kynast, R. G. — Molnár-Láng, M. — Kőszegi, B. — Sutka, J. — Gill, B. S.: 1999. Molecular cytogenetic analysis of Aegilops cylindrica. Host. Genome, 42: 497–503.

    CAS  Article  Google Scholar 

  15. Linc, G. — Molnár-Láng, M.: 2003. Producing new wheat/barley disomic additions in winter wheat background using different methods and analyse them by molecular cytogenetic techniques Növénytermelés, 52:3–13. (Summary in English).

    Google Scholar 

  16. Molnar, I.-Linc, G.-Dulai, S.-D.Nagy, E.-Molnár-Láng, M.: 2005. Ability of chromosome 4H to compensate for 4D in response to drought stress in a newly developed wheat-barley 4H(4D) disomic substitution line. Submitted to Plant Breeding

  17. Molnár-Láng, M. — Sutka, J. — Barnabás, B. — Sági, L. — Belea, A.: 1985. Production of barley (Hordeum vulgare) ×wheat (Triticum aestivum L.). Növénytermelés, 34: 257–261. (Summary in English).

    Google Scholar 

  18. Molnár-Láng, M. — Sutka, J.: 1994. The effect of temperature on seed set and embryo development in reciprocal crosses of wheat and barley. Euphytica, 78: 53–58.

    Google Scholar 

  19. Molnár-Láng, M. — Linc, G. — Friebe, B. R. — Sutka, J.: 2000. Detection of wheat-barley translocations by genomic in situ hybridization in derivatives of hybrids multiplied in vitro. Euphytica, 112: 117–123.

    Article  Google Scholar 

  20. Reader, S. M. — Abbo, S. — Purdie, K. A. — King, I. P. — Miller, T. E.: 1994. Direct labelling of plant chromosomes by rapid in situ hybridization. Trends Genet., 10: 265–266.

    CAS  Article  Google Scholar 

  21. Riley, R.-Chapman V.: 1958. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature, 182:713–715.

    Article  Google Scholar 

  22. Riley, R. — Kimber, G. — Chapman, V.: 1961. Origin of genetic control of diploid-like behavior of polyploid wheat. J. Hered., 52: 22–25.

    Article  Google Scholar 

  23. Riley, R. — Kempana, C.: 1963. The homoeologous nature of the non-homologous meiotic pairing in Triticum aestivum deficient for chromosome V (5B). Hered., 18: 287–306.

    Article  Google Scholar 

  24. Riley, R. — Chapman, V. — Johnson, R.: 1968. The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet. Res., Camb., 12: 199–213

    Article  Google Scholar 

  25. Schwarzacher, T. — Leitch, A. R. — Bennett, M. D. — Heslop-Harrison, J. S.: 1989. In-situ localization of parental genomes in a wide hybrid. Ann. Bot., London, 64: 315–324.

    Article  Google Scholar 

  26. Schwarzacher, T. — Anamthawat-Jónsson, K. — Harrison, G. E. — Islam, A. K. M. R. — Jia, J. Z. — King, I. P. — Leitch, A. R. — Miller, T. E. — Reader, S. M. — Rogers, W. J. — Shi, M. — Heslop-Harrison, J. S.: 1992. Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor. Appl. Genet., 84: 778–786.

    CAS  Article  Google Scholar 

  27. Sears, E. R.: 1952. Homoeologous chromosomes in Triticum aestivum. Genet. 37: 624.

    Google Scholar 

  28. Sears, E. R. — Okamoto, M.: 1958. Intergenomic chromosome relationships in hexaploid wheat. Proc. 10th Int. Cong. Genet., 2: 258–259.

    Google Scholar 

  29. Sears, E. R.: 1973. Agropyron-Wheat transfers induced by homoeologous pairing. Proc. 4th Int. Wheat Genet. Symp., Columbia, 191–200.

  30. Sears, E. R.: 1977. An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol., 19: 585–593.

    Article  Google Scholar 

  31. Sears, E. R. — Loegering, W.Q.: 1982. Elimination of an undesirable trait from an alien translocation line by induced homoeologous pairing. In: Singh RB, Singh RM and Singh BD, (eds), Advances in Cytogenetics and Crop Improvement, Kalyani publishers, New Delhi, pp. 81–86.

    Google Scholar 

  32. Schubert, L. — Shi, F. — Fuchs, J. — Endo, T. R.: 1998. An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant J., 14: 489–495.

    CAS  Article  Google Scholar 

  33. Sherman, J. D. — Smith, L. Y. — Blake, T. K. — Talbert, L. E.: 2001. Identification of barley genome segments introgressed into wheat using PCR markers. Genome, 44: 38–44.

    CAS  Article  Google Scholar 

  34. Taketa, S. — Awayama, T. — Ichii, M. — Sunakawa, M. — Kawahara, T. — Murai, K.: 2005. Molecular cytogenetic identification of nullisomy 5B induced homoeologous recombination between wheat chromosome 5D and barley chromosome 5H. Genome, 48: 115–124.

    CAS  Article  Google Scholar 

  35. Zhu, B. — Choi, D. W. — Fenton, R. — Close, T.J.: 2000. Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol. Gen. Genet., 264: 145–53.

    CAS  Article  Google Scholar 

  36. Zitzewitz, J. — Szucs, P. — Dubcovsky, J. — Yan, L. — Francia, E. — Pecchioni, N. — Casas, A. — Chen, T. H. — Hayes, P. M. — Skinner, J. S.: 2005. Molecular and structural characterization of barley vernalization genes. Plant. Mol. Biol., 59(3):449–67.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Sepsi.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Sepsi, A., Németh, K., Molnár, I. et al. Induction of chromosome rearrangements in a 4H(4D) wheat-barley substitution using a wheat line containing a Ph suppressor gene. CEREAL RESEARCH COMMUNICATIONS 34, 1215–1222 (2006). https://doi.org/10.1556/CRC.34.2006.4.261

Download citation

Index words

  • Triticum aestivum
  • Aegilops speltoides
  • Ph suppressor gene
  • wheat-barley translocations