Cereal Research Communications

, Volume 33, Issue 4, pp 769–776 | Cite as

A study of the yield stability of winter wheat varieties

  • P. PepóEmail author
  • Z. Győri


In our long-term experiment the analyses of stability were conducted in one shorter (years 2001–2003) and one longer (years 1994–2003) periods by using different numbers (2–6) of varieties in each one of the periods. The results of our research proved that the method, applied can be efficiently used to analyse the environmental responses, the behaviour under varying environmental conditions of different varieties. Varieties can adapt themselves differently to favourable and unfavourable environmental conditions. In general, varieties (e.g. older varieties, like Mv 15, Mv 20, and new varieties, like Lupus, Mv Emese) that give relatively good yields under unfavourable conditions (2–3 t. ha−1 environmental average) will utilise improving environmental conditions (7–8 t. ha−1 environmental average) to a. lesser extent and vice versa. Varieties Mv 21, GK Öthalom and Mv Palotás (a currently cultivated variety) made good use of intensive growing conditions. The data in this paper may assist in choosing varieties best suited to the production and cultivation conditions of the production site.

By applying stability analyses we proved that the stability of the control treatment was the most favourable over the investigation period, which good yield stability, however, manifested at very low yield levels. Our findings showed that under more intensive environmental conditions (7–9 t. ha−1 yield level) appropriate and optimum fertilizer application was very effective and in comparison to the control treatment the yield differences between optimal fertilizer treatments were up to as much as 1–6 t. ha−1. Under favourable environmental conditions the highest yields were obtained when a. fertilizer ratio of N120+PK was applied. Under unfavourable conditions (these may be either or both ecological and cultivation conditions), however, only retrained, moderate fertilizer doses are recommended. Under extremely unfavourable conditions (very dry cropping year) the linear regression curves for fertilizer treatments were below those of the control treatments, which referred to yield depressions due to water deficiency.


winter wheat yield-stability varieties long-term experiment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BEDŐ, Z.- BALLÁ, L.: 1977. Őszi búzafajták termőképesség stabilitása különböző ökológiai viszonyok között. Növénytermelés. 26, 6: 443–449.Google Scholar
  2. 2.
    BERZSENYI, Z.: 1995. A. kukoricateresztési technológiák fenntarthatóságának vizsgálata stabilitásanalízissel tartamkísérletekben. 37. Georgikon Napok, A. fenntartható fejlődés időszerű kérdései a. mezőgazdaságban, Keszthely. 27–36.Google Scholar
  3. 3.
    BIRKÁS, M.- GYURICZA, CS.: 2001. A. szélsőséges csapadékellátottság hatása az őszi búza néhány termesztési tényezőjére barna erdőtalajon. Növénytermelés. 50: 2–3, 333–344.Google Scholar
  4. 4.
    BRADSHAW, A.D.: 1965. Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13: 115–155.Google Scholar
  5. 5.
    DOTLACIL, L.- HERMUTH, J.- TISOVA, V.- BRINDZA, J.- DEBRE, R: 2000. Yield potential and stability in selected winter wheat landraces and obsolete cultivars of European origin. Rostiinna Vyroba. 46: 4, 153–158.Google Scholar
  6. 6.
    EBERHART, S.A.- RUSSEL, W.A.: 1966. Stability parametere for comparing varieties. Crop Science 6. 36–40.Google Scholar
  7. 7.
    HEYLAND, K.U.- LOHMANN, G.: 1997. The assessment of crop rotation in reference to increasing different yields and yield assuring production methods. Acta Academiae Agriculturae ac Technicae Olstenensis, Agricultura. No. 64. 185–192.Google Scholar
  8. 8.
    KANG, M.S.: 1993. Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agronomy Journal, 85. No. 3. 754–757.Google Scholar
  9. 9.
    KANG, M.S.- GAUCH, H.G.: 1996. Genotype - by- environment interaction. Boca Raton: CRC PressGoogle Scholar
  10. 10.
    KOVAC, K.: 1998. The effect of forecrop, soil tillage and fertilizer application on yield, its structure and effíciency of winter wheat growing. Rostiinna Vyroba. 44: 3, 133–139.Google Scholar
  11. 11.
    KURPELOVA, M.: 1982. The effect of meteorological factors on the yield variability of the main crops in Slovakia. Meteorologicke Zpravy. 35: 33–36.Google Scholar
  12. 12.
    LIN, C.S.- BINNS, M.R.- LEFKOVICH, R.L.: 1986. Stability analysis: Where do we stand? Crop Science, 26. 894–900.Google Scholar
  13. 13.
    LÖKÖS TÓTH, K.- HESZKY, L.- KRAJEWSKI, P.- KACZMAREK, Z.: 1997. Adaptability in Hungarian winter wheat varieties. Advances in biometrical genetics. Proceedings of the tenth meeting of the EUCARPIA Section Biometrics in Plant Breeding, Poznan, Poland, 14–16 May 1997, 209–214.Google Scholar
  14. 14.
    MATSUO, T.: 1975. Adaptability, stability and productivity of varieties in crop plants. Adaptability in plants-JIBP synthesis, 6: 121–139.Google Scholar
  15. 15.
    PEPÓ, PÉ.: 2001. Újabb adatok az eltérő genotípusú őszi búza-fajták trágyareakciójához. Növénytermelés. 50. 2–3. 203–215.Google Scholar
  16. 16.
    PEPÓ, PÉ.: 2002. Kalászos gabona-termesztés. Gazdálkodási stratégia. Szerk.: Balla, L. Mezőgazda Kiadó, Budapest.Google Scholar
  17. 17.
    PEPÓ, PÉ.: 2003a. Most important elements in sustainable wheat production. Sustainable Agriculture and Rural Development. Acta fytotechnica et zootechnika. Nitra. 171–174.Google Scholar
  18. 18.
    PEPÓ, PÉ.: 2003b. Role of fertilization in precision agriculture of wheat. International Brisbane Australia. Ed.: J. Tullberg. 901–909.Google Scholar
  19. 19.
    PEPÓ, PÉ.: 2003c. Variety specific fertilization in winter wheat production. Fertilizers in context with resource management in agriculture. Ed.: E. Schnug et al., Braunschweig-Budapest-Wienna.. I. 206–213.Google Scholar
  20. 20.
    PRESTES, A.M.- DOS SANTOS, H.P.- REIS, E.M.: 2002. Effect of cultural practices on the incidence of leaf blotches of wheat. Pesquisa Agropecuaria Brasileira. 37 (6): 791–797.Google Scholar
  21. 21.
    RÁUN, W.R.- BARRETO, HJ.- WESTERMAN, L.: 1993. Use of stability analysis for long-term soil fertility experiments. Agronomy Journal, 85. No. 1. 159167.Google Scholar
  22. 22.
    SCHOBERLEIN, W.- HERRMANN, K.- MATTHIES, H.: 1999. Influence of a. combined fungicide-insecticide treatment of winter wheat seed on crop development and yiejd after early and normal sowing date. Special issue: Imidacloprid. Pflanzenschutz-Nachrichten-Bayer. 52: 3, 320–346.Google Scholar
  23. 23.
    UNTILA, I.P.- POSTOLATN, A.A.- GAINA, L.V.: 1992. Production of high-yielding adaptable varieties of winter wheat for Moldova. Vestnik Selskokhozyiastvennoi Nauki Moskva 7-12: 68–76.Google Scholar
  24. 24.
    ZATKO, J.- BALSAN, J.: 1987. Effect of some agronomic practices on grain yield of the new winter wheat cv. SO-8123. Polnohospodarstvo. 33: 12, 1073–1081.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2005

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Crop Production and Applied EcologyUniversity of Debrecen, Centre of Agricultural Sciences, Faculty of AgronomyDebrecenHungary
  2. 2.Department of Food Science and Quality AssuranceUniversity of Debrecen, Centre of Agricultural Sciences, Faculty of AgronomyDebrecenHungary

Personalised recommendations