Advertisement

Cereal Research Communications

, Volume 33, Issue 4, pp 697–704 | Cite as

Root growth and proline content in drought sensitive and tolerant maize (Zea mays L.) seedlings under different water potentials

  • Adriana B. Sánchez-Urdaneta
  • Cecilia B. Peña-ValdiviaEmail author
  • Carlos Trejo
  • J. Rogelio Aguirre R.
  • Elizabeth S. Cárdenas
Article

Abstract

The effect of substrate water potential (ψW) in root growth and proline content of maize seedlings of Tuxpeño Sequía C0 (TSC0) and Tuxpeño Sequía C8 (TSC8), sensitive and resistant to drought respectively, were evaluated. Seventy two hours old seedlings, with 5 cm root length, were maintained for 24 h in vermiculite at ψW between −0.03 and −2.35 MPa. Root length, fresh and dry weight, number of lateral roots and proline content were evaluated. Root enlargement of TSCO was significantly higher than TSC8 at −0.03 MPa, but the response was opposite at low substrate ψW. The number of lateral roots was reduced in 23% in TSC8 at the lowest substrate ψW (−2.35 MPa) but it was not significantly affected in TSC0. A higher proline content was quantified in the cell division root region than in differentiation root region in both maize populations (5.64 and 6.96 umol 100 mg−1 of dry weight in TSC0 and TSC8, respectively); and ψW between −0.65 and −2.35 MPa induced a drastic and significant increase of proline content in both populations. The statistical interaction between maize population, substrate ψW, and root region was highly significant (P≤0.0039) for proline content. The results demonstrated that eight cycles of recurrent selection of Tuxpeño for drought tolerance induced a reduction of the number of secondary roots and proline content in the differentiation root region, but a proline increase in the cell division region when root seedling grow under no restrictive water conditions (ψW=−0.03 MPa), beside recurrent selection modified root reaction to low substrate ψW by accumulation of dry matter and proline.

Key words

maize seedling root water potential proline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akkas, M; A.K.M.A. Prodhan; M.A. Haque. 1999. Effect of water stress on the anatomical characters of root and item of maize plant. Indian J. Agric. Res. 33:245–253.Google Scholar
  2. Albarran R., A.E. 2004. Efectos de la restricción de humedad en la fisiología, crecimiento, componentes del rendimiento y calidad del grano de centeno (Secale cereale L.) y trigo (Triticum aestivum L). Tesis de maestría. Colegio de Postgraduados, Montecillo, México. 104 p.Google Scholar
  3. Bolaños, J.; G.O. Edmeades. 1993a. Eight cycles of selection for drought tolerance in lowland tropical maize. I. Responses in grain yield, biomass and radiation utilization. Field Crops Res. 31: 233–252.CrossRefGoogle Scholar
  4. Bolaños, J.; G.O. Edmeades. 1993b. Eight cycles of selection for drought tolerance in lowland tropical maize. II. Responses in reproductive behavior. Field Crops Res. 31: 253–268.CrossRefGoogle Scholar
  5. Bates, L.W.; Waldren R.P.; Teare L.D. 1973. Rapid determination of proline for water stress studies. Plant and Soil 39: 205–207.CrossRefGoogle Scholar
  6. Cruz, R.T.; W.R. Jordan; M.C. Drew. 1992. Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolor L. following exposure to water deficit. Plant Physiol. 99: 203–212.CrossRefGoogle Scholar
  7. Dhanda, S.S.; G.S. Seit; R.K. Behl. 2002. Inheritance of seedling traits under drought stress conditions in bread wheat. Cereal Res. Comm. 30: 293–300.Google Scholar
  8. Ellis, R.H.; T.D. Hong; E.H. Roberts. 1985. General approaches to promoting seed germination. In: Handbook of seed technology for genebanks. Vol. II. Compendium of specific germination. International Board for Plant Genetic Resources. Rome. pp. 221–237.Google Scholar
  9. Ferrarotto S., M. 2003. Proline accumulation in pigweed plants (Amaranthus dubius Mart, and Amaranthus emeritus L.) growing under water stress conditions. Rev. Fac. Agron., Universidad del Zulia 20: 453–460.Google Scholar
  10. Hochholdinger, F.; K. Woll; M. Sauer; D. Dembinsky. 2004. Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes. Annals Bot. 93: 359–368.CrossRefGoogle Scholar
  11. Huang, B.; H. Gao. 2000. Root physiological characteristics associated with drought resistance in tall fescue cultivars. Crop Sci. 40: 196–203.CrossRefGoogle Scholar
  12. Irizar-Garzar, M.B.G; C.B. Peña-Valdivia. 2000. Chlorophyll and photosynthetic oxygen evolution in water-stressed triticale (Tricosecale Wittmack) and wheat (Triticum aestivum L) during vegetative stage. Cereal Res. Comm. 28 (4): 387–394.Google Scholar
  13. Khan, I.A.; H.A.S. Habib S.; M.H.N. Tahir. 2004. Selection criteria based on seedling growth parameters in maize varies under normal and water stress conditions. Int. J. Agric. Biol. 6(2):252–256.Google Scholar
  14. Maiti, R.K., V.P. Singh, P. Wesche-Ebeling, E. Sanchez-Arreola, T. Hernandez, E. Aguilar-Najera. 2004. Research advances on cold, drought and salinity tolerance and its mechanisms of resistance in maize (Zea mays L.) - a review. Crop Res. (Hisar) 27:1–29.Google Scholar
  15. Meloni, D.R.; Oliva M.A.; Ruiz H.A.; Martinez C.A. 2001. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J. Plant Nutr. 24: 599–612.CrossRefGoogle Scholar
  16. Nilsen, E.T.; D.M. Orcutt. 1996. Physiology of plants under stress. John Wiley & Sons, Inc. USA. 689 p.Google Scholar
  17. Ober, E.S.; R.E. Sharp. 1994. Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. Plant Physiol. 105: 981–987.CrossRefGoogle Scholar
  18. Prechamandra, G.S.; Saneora H.; Fujita K.; Ogata S. 1992. Osmotic adjustment and stomatal response to water deficit in maize. J. Exp. Bot. 43: 1451–1456.CrossRefGoogle Scholar
  19. Raymond, M.J.; Smirnoff N. 2002. Proline metabolism and transport in maize seedlings at low water potential. Ann. Bot. 89: 813–823.CrossRefGoogle Scholar
  20. Sánchez-Urdaneta, A.B.; C.B. Peña-Valdivia; J.R. Aguirre R.; C. Trejo; E. Cárdenas; A. Galicia J. 2003. Evaluatión de la permeabilidad de las membranas radicales de plántulas de frijol (Phaseolus vulgaris L.) silvestre y domesticado bajo déficit de humedad. Interciencia 28: 597–603.Google Scholar
  21. Sánchez-Urdaneta, A.B.; C.B. Peña-Valdivia; J.R. Aguirre R.; C. Trejo; E. Cárdenas. 2004. Efectos del potential de agua en el crecimiento radical de Agave salmiana Otto ex Salm-Dyck. Interciencia 29: 626–631.Google Scholar
  22. SAS Institute. 1999–2000. SAS user’s guide: Statistics. Version 8.1. SAS institute Inc. Cary, NO USA. 1290 p.Google Scholar
  23. Sharp, R.E.; W.K. Silk; T.C. Hsiao. 1988. Growth of the maize primary root at low water potentials. I. Spatial distribution of expansive growth. Plant Physiol. 87: 50–57.CrossRefGoogle Scholar
  24. Sofo, A.; B. Dichio; C. Xiloyannis; A. Masia. 2004. Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Physiol. Plantarum 121 (1):58–65.CrossRefGoogle Scholar
  25. Tuberosa, R.; S. Salvi; M.C. Sanguineti; P. Landi; M. Maccaferri; S. Coti. 2002. Mapping QTLs regulating morpho-physiological traits and yield, case studies, shortcomings and perspectives in drought-stressed maize. Ann. Bot. 89: 941–963.CrossRefGoogle Scholar
  26. Turner, N.C. 1997. Further progress in crop water relations. Adv. Agron. 58:293–338.CrossRefGoogle Scholar
  27. Umayal, L; R.C. Babu; P. Chezhian; S. Sadasivam. 2001. Water stress induced histological and enzymatic changes in roots of rice cultivars. Plant Archives 1 (1/2):31–34.Google Scholar
  28. XingYuan, Z.; C. FuLiang, L. GuoHua. 2004. Physiological responses of two warm-season turfgrasses to persistent soil drought stress. Acta Prataculturae Sinica 13:84–88.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2005

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Adriana B. Sánchez-Urdaneta
    • 1
  • Cecilia B. Peña-Valdivia
    • 2
    Email author
  • Carlos Trejo
    • 2
  • J. Rogelio Aguirre R.
    • 3
  • Elizabeth S. Cárdenas
    • 2
  1. 1.Facultad de AgronomíaUniversidad del ZuliaMaracaiboVenezuela
  2. 2.Botánica and FitopatologíaColegio de PostgraduadosMontecilloMéxico
  3. 3.Institute de Investigatión de Zonas DesérticasUASLP. San Luis PotosíSan Luis Potosí, S.L.P.México

Personalised recommendations