Cereal Research Communications

, Volume 33, Issue 2–3, pp 569–576 | Cite as

Bilinear thermal time models for predicting flowering time of rice

  • Béla GombosEmail author
  • Ibolya Simon-Kiss


Temperature is a dominant factor in rice development. Various thermal time methods are a possible way to model the development, and are able to predict phenological stages such as flowering. In our studies three different bilinear models were studied concerning the predicting of duration from emergence to flowering of rice based on phenological data collected from rice experiments carried out in the Irrigation Research Institute between 1991 and 1999 with the rice variety Ringola. The advance from linear model, which is preferred in agriculture involves an upper threshold temperature as a second parameter, and describes the development rate with a constant (Method 1) and two different steepness functions of linear decrease (Method 2 and 3) above this threshold. The duration of the phenological phase showed only slight variations (coefficient of variation, CV=6.43), thus the average number of days offered an acceptable prediction. The linear method did not show a significant improvement (CV=3.96) on the level P=5%. However the three tested bilinear methods resulted in significant development (CV=2.75; 2.71 and 2.73) if adequate parameters were applied. The distribution of variation coefficients according to different parameter combinations gave information on sensitivity of methods, while the adequate parameters of lower and upper thresholds provided some hints about climatic demands of rice.

Key words

degree day temperature rice phenology flowering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bonhomme, R.: 2000. Bases and limits to using “” units. European Journal of Agronomy 13, 1–10.CrossRefGoogle Scholar
  2. Dingkuhn, M.- Sow, A.- Samb, A.- Diack, S.- Asch F.: 1995. Climatic determinants of irrigated rice performance in the Sahel — I. Photothermal and micro-climatic responses of flowering. Agricultural Systems 48, 385–410.CrossRefGoogle Scholar
  3. Dunay S.: 1974. Rizs. In: Agroklimatológia és növénytermesztés. Rice. In: Agroclimatology and Crop Production, Budapest, 41–53.Google Scholar
  4. Fukai, S.: 1999. Phenology in rainfed lowland rice. Field Crops Research 64, 51–60.CrossRefGoogle Scholar
  5. Fukai, S.- Pantuwav, G.- Jongdee, B.- Cooper, M.: 1999. Screening for drought résistance in rainfed lowland rice. Field Crops Research 64, 61–74.CrossRefGoogle Scholar
  6. Gao, L.Z.- Jin, Z.Q.- Huang, Y.- Zhang, L.Z.: 1992. Rice clock model — a computer simulation model of rice development. Agricultural and Forest Meteorology 60, 1–16.CrossRefGoogle Scholar
  7. Gilmore, E.C.- Rogers, J.S.: 1958. Heat units as a method of measuring maturity in corn. Agronomy Journal 50, 611–615.CrossRefGoogle Scholar
  8. Nishiyama, I.: 1976. Effects of temperature on the vegetative growth of rice plants. In: Climate and Rice. International Rice Research Institute, Manila, 159–183.Google Scholar
  9. Petrasovits I.: 1958. A rizs különbözö mélységű árasztóvizének hőmérsékleti hatásáról. Temperature effects of different level flooding water of rice. Időjárás 62, 2:99–107.Google Scholar
  10. Sié, M.- Dingkuhn, M.- Wopereis, M.C.S.- Miezan K.M.: 1998. Rice crop duration and leaf appearance rate in a variable thermal environment. II. Comparison of genotypes. Field Crops Research 58, 129–140.CrossRefGoogle Scholar
  11. Simon-Kiss I.: 1979. A hazai rizstermesztés problémái. The problems of Hungarian rice production. Mezőgazdasági és Élelmezésügyi Minisztérium, Agroinform, Budapest.Google Scholar
  12. Simon-Kiss I.: 1983. A rizs termesztése. Rice production. Mezőgazdasági Kiadó, Budapest.Google Scholar
  13. Summerfield, R.J.- Collinson, S.T.- Ellis, R.H.- Roberts, E.H.- Penning de Vries, F.W.T.: 1992. Photothermal responses of flowering in rice (Oryza sativa). Annals Botany 69, 101–112.CrossRefGoogle Scholar
  14. Szász G. (1961): A rizs termesztésének időjárási feltételei a fő termőtájakon. Climatic conditions of rice growing in the main production regions in Hungary. Növénytermelés, 10.évf. 193–206.Google Scholar
  15. Wagner R.: 1957. Adatok a kopáncsi rizsfőldek éghajlatához. Data concerning the climate of rice-plantations in Kopáncs (Hungary). Időjárás 61, 4: 266–277.Google Scholar
  16. Yang, S.- Logan, J.- Coffey, D.L.: 1995. Mathematical formulae for calculating the base temperature for growing degree days. Agricultural and Forest Meteorology 74, 61–74.CrossRefGoogle Scholar
  17. Yin, X.- Kropff, M.J.- McLaren, G- Visperas, R.M.: 1995. A nonlinear model for crop development as a function of temperature. Agricultural and Forest Meteorology 77, 1–16.CrossRefGoogle Scholar
  18. Yin, X.- Kropff, M.J.- Ellis, R.H.: 1996. Rice flowering in response to diurnal temperature amplitude. Field Crops Research 48, 1–9.CrossRefGoogle Scholar
  19. Yoshida, S.: 1981. Fundamentals of rice crop science. International Rice Research Institut, Manila, 269.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2005

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of Agricultural Water and Environmental ManagementTessedik Sámuel CollegeSzarvasHungary
  2. 2.Research Institute for Fisheries, Aquaculture and IrrigationSzarvasHungary

Personalised recommendations