Cereal Research Communications

, Volume 33, Issue 2–3, pp 541–548 | Cite as

Antioxidant activity and chilling tolerance of young maize inbred lines and their hybrids

  • Tibor JandaEmail author
  • Eszter Kósa
  • János Pintér
  • Gabriella Szalai
  • Csaba L. Marton
  • Emil Páldi


Six maize hybrids and their parental inbred lines, grown under controlled conditions, were tested for chilling tolerance using the chlorophyll fluorescence induction technique. The genotypes were ranked based on the decrease in the Fv/Fm parameter after chilling stress at 5°C. The activities of enzymes playing a role in stress defence mechanisms (catalase, glutathione reductase, ascorbate peroxidase, guaiacol peroxidase and glutathione-S-transferase) were determined in control plants and after 1 day of cold treatment. The results suggest that although there are differences between the genotypes in the activities of almost all the antioxidant enzymes, these differences do not reflect the differences in the chilling tolerance.

Key words

antioxidant enzymes cold stress fluorescence induction Zea mays L. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ádám, A., Bestwick, CS., Barna, B., Mansfield, J.W. (1995) Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. Phaseolicola. Planta 197: 240–249.Google Scholar
  2. Apel, K., Hirt, H. (2004) Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373–379.CrossRefGoogle Scholar
  3. Baker, N.R., East, T.M., Long, S.P. (1983) Chilling damage to photosynthesis in young Zea mays. II. Photochemical function of thylakoids in vivo. J. Exp. Bot. 34: 189–197.CrossRefGoogle Scholar
  4. Bridger, G.M., Yang, W., Falk, D.E., McKersie, B.D. (1994) Cold-acclimation increases tolerance of activated oxygen in winter cereals. J. Plant Physiol. 144: 235–240.CrossRefGoogle Scholar
  5. Foyer, C.H., Vanacker, H., Gomez, L.D., Harbinson, J. (2002) Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review. Plant Physiol. Biochem. 40:659–668.CrossRefGoogle Scholar
  6. Holá, D., Langrová, K., Kočcová, M., Rothová, O. (2003) Photosynthetic parameters of maize (Zea mays L.) inbred lines and F-1 hybrids: their different response to, and recovery from rapid or gradual onset of low-temperature stress. Photosynthetica 41: 429–442.CrossRefGoogle Scholar
  7. Holá, D., Kočcová, M., Rothová, O., Benečsová, M., Bartáková, J., Wilhelmová, N. (2004) Different response of inbred and hybrid maize to chilling periods of various duration. Acta Physiol. Plant. 26 Suppl.: 227–228.Google Scholar
  8. Janda, T., Szalai, G., Kissimon, J., Páldi, E., Marton, C. and Szigeti, Z. (1994) Role of irradiance in the chilling injury of young maize plants studied by chlorophyll fluorescence induction measurements. Photosynthetica 30:293–299.Google Scholar
  9. Janda, T. (1998) Use of chlorophyll fluorescence induction techniques in the study of low temperature stress in plants. Acta Agron. Hung. 46:77–91.Google Scholar
  10. Janda, T., Szalai, G., Ducruet, J.-M., Páldi, E. (1998) Changes in photosynthesis in inbred maize lines with different degrees of chilling tolerance grown at optimum and suboptimum temperatures. Photosynthetica 35:205–212.CrossRefGoogle Scholar
  11. Janda, T., Szalai, G., Rios-Gonzalez, K., Veisz, O., Páldi, E. (2003) Comparative study of frost tolerance and antioxidant activity in cereals. Plant Sci. 164: 301–306.CrossRefGoogle Scholar
  12. Kocsy, G., Owttrim, G., Brander, K., Brunold, C. (1997) Effect of chilling on the diurnal rhythm of enzymes involved in protection against oxidative stress in a chilling tolerant and a chilling sensitive maize genotype. Physiol. Plant. 99: 249–254.CrossRefGoogle Scholar
  13. Kocsy, G., Galiba, G., Brunold, C. (2001) Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiol. Plant. 113: 158–164.CrossRefGoogle Scholar
  14. Kocsy, G., Kobrehel, K., Szalai, G., Duviau, M.P., Bûzás, Z., Galiba, G. (2004) Abiotic stress-induced changes in glutathione and thioredoxin h levels in maize. Environm. Exp. Bot. 52: 101–112.CrossRefGoogle Scholar
  15. Kömerová, M., Holá, D. (1999) The effect of low growth temperature on Hill reaction and photosystem 1 activities and pigment contents in maize inbred lines and their F1 hybrids. Photosynthetica 37:477–488.CrossRefGoogle Scholar
  16. Lootens, P., van Waes, J., Carlier, L. (2004) Effect of a short photoinhibition stress on photosynthesis, chlorophyll a fluorescence, and pigment contents of different maize cultivais. Can a rapid and objective stress indicator be found? Photosynthetica 42: 187–192.CrossRefGoogle Scholar
  17. Mannervik, B., Guthenberg, G (1981) Glutathione transferase (Human placenta). Methods in Enzymol. 77: 231–235.CrossRefGoogle Scholar
  18. Smith, I.K., Vierheller, T.L., Thorne, C.A. (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5’dithiobis(2-nitrobenzoic acid). Anal. Biochem. 175:408–413.CrossRefGoogle Scholar
  19. Takáčc, T., Luxová, M., Gačsparíková, O. (2003) Cold induced changes in antioxidant enzymes activity in roots and leaves of two maize cultivars. Biologia, Bratislava, 58: 875–880.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2005

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Tibor Janda
    • 1
    Email author
  • Eszter Kósa
    • 2
  • János Pintér
    • 1
  • Gabriella Szalai
    • 1
  • Csaba L. Marton
    • 1
  • Emil Páldi
    • 1
  1. 1.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary
  2. 2.Dept. of Botany and Plant Physiology, Georgikon Faculty of AgricultureUniversity of VeszprémKeszthelyHungary

Personalised recommendations