Advertisement

Cereal Research Communications

, Volume 33, Issue 2–3, pp 477–483 | Cite as

Evaluation of barley doubled haploid and mutant lines for agronomic traits and scald resistance

  • M. I. E. ArabiEmail author
  • M. Jawhar
Open Access
Article

Abstract

Barley (Hordeum vulgare L.) is a major field crop grown worldwide. Field research was undertaken at ICARDA’s (International Center for Agriculture Research in Dry Area) main station in Northwest Syria to evaluate barley doubled haploid (DH) and mutants lines for agronomic traits (grain yield, plant height and days to heading) and resistance to scald (Rhynchosporium secalis) under natural infection conditions for two consecutive years. Significant differences were found among lines in the percentage of infected leaf area. However, they exhibited a continuous range of response from very susceptible to resistant. Seven lines had significantly lower percentage of infected leaf area with disease than did the other lines, which are associated with potential for grain yield and earliness. These lines could be considered as possible donors in further barley breeding programs.

Key words

Hordeum vulgare L. Rhynchosporium secalis doubled haploids mutants resistance 

References

  1. Abbott, D. G, Burdon, J. J., Jarosz, A. M., Brown, A. H. D., Muller, W J. and Read, B. J., 1991. The relationship between seedling infection types and field reactions to leaf scald in Clipper barley backcross lines. Aust. J. Agric Res., 42: 801–809.CrossRefGoogle Scholar
  2. Alemayehu, F., 1995. Genetic variation between and within Ethiopian barley landraces with emphasis on durable resistance. Thesis, land-bouw Universiteit Wageningen. The Netherlands.Google Scholar
  3. Anonymous, 1988. STAT-ITCF, Programme, MICROSOFT, realized by ECOSOFT, 2nd Ver. Institut Technique des cereals et des Fourrages, Paris, pp. SS.Google Scholar
  4. Arabi, M. I. E., 1991. Amelioration de la resistance genetique de l’orge a Drechslera teres (Sacc.) Shoem. Par hybridation et mutation. These Doctorate de l’institute National polytechnique de Tolouse. France, pp. 165.Google Scholar
  5. Barua, U.M., Chalmers, K. J., Hackett, C. A., Thomas, W. T. B., Powell, W. and Waugh, R., 1993. Identification of RAPD markers linked to a a Rhynchosporium secalis resistance locus in barley using near isogenic lines and bulked segregant analysis. Heredity 71:177–187.CrossRefGoogle Scholar
  6. Brown, A. H. D., Garvin, D. F., Burdon, J. J., Abbott, D. C. and Read, B. J., 1996. The effect of combining scald resistance genes on disease levels, yield and quality traits in barley. Theor. Appl. Genet., 93: 361–366.CrossRefGoogle Scholar
  7. Ceoloni, L., 1980. Race differentiation and search sources of resistance to Rhynchosporium secalis in barley in Italy. Euphytica 29: S47–S53.CrossRefGoogle Scholar
  8. Choo, T. M., Tekauz, A., Ho, K. M. and Martin, R. A., 1994. Use of doubled haploids in studying net blotch resistance in barley. In: eds. Toward enhanced and sustainable agricultural productivity in the 2000’s: Breeding research and biotechnology. Hung, S. C, Liu, D. J. Kao, C. H. and Chang, T. T. Proceeding of 7* International Congree of SABRAO and International Symposium of Wsaa Taichung, Taiwan, p. 179–187.Google Scholar
  9. Eckstein, P. E., Turkington, K., Voth, D., Hay, D., Orr, D., Penner, G. A., Rossnagel, B. G. and Scoles, G. J., 2000. Identification and development of markers for scald (Rhyncosporium secalis) resistance gene in barley. Proceedings of the 5* Int. Barley Genetics Symposium, Adelaide, Australia, Oct. 22–27, 2000.Google Scholar
  10. Friedt, W., Foroughi, B. and Wenzel, G., 1984. Agronomic performance of androgenetic doubled haploid spring barley (Hordeum vulgare L.). In: Lange, W and Zeven, A. C. ed. Efficiency in plant breeding. Proceeding on 10th congress of European association for research on plant breeding. Hogenboom, N. G. Wageningen, Netherlands, pp. 313.Google Scholar
  11. Garvin, D. F., Brown, A. H. D. and Burdon, J. J., 1997. Inheritance and chromosome locations of scald-resistance genes derived from Iranian and Turkish wild barleys. Theor. Appl. Genet., 94: 1086–1091.CrossRefGoogle Scholar
  12. Habgood, R. M. and Hayes, J. D., 1971. The inheritance of resistance to Rhyncosporium secalis in barley. Heredity, 27: 25–37.CrossRefGoogle Scholar
  13. Jui, P. Y., Choo, T. M., Ho, K. M., Konishi, T. and Martin, R. A., 1997. Genetic analysis of a two-raw x six-row cross of barley using doubled haploid lines. Theor. Appl. Genet., 94: 549–556.CrossRefGoogle Scholar
  14. Lehnackers, H., and Knogge, W., 1990. Cytological studies on the infection of barley cultivars with known resistance genotypes by Rhynchosporium secalis. Can. J. Bot., 68:1953–1961.CrossRefGoogle Scholar
  15. Lundovist, L. and Lundovist, A., 1991. Dominant resistance to barley powdery mildew race D1. isolated after mutagen treatments in four highbred barley varieties. Hereditas, 115: 241–253.CrossRefGoogle Scholar
  16. Mamluk, O. F., Cetin, L., Braun, H. J., Bolat, N., Bertschinger, L., Makkouk, K. M., Yildirim, A. F., Saari, E., Zencircia, N., Allustan, S., Cali, S., Benival, P. S. and Dusunceli, F., 1997. Current status of wheat and barley diseases in the Central Anatolian Plateau of Turkey. Phytopathol. Medit. 36:167–181.Google Scholar
  17. McLelland, M. B. 1989. Barley production in Alberta. Agdex 114/20-1. Alberta agriculture, food and rural development, Lacombe, Alberta, Canada.Google Scholar
  18. Robbertse, B, Lennox, C. L., van Jaarsveld, Crous, P. W. and van der Rijst, M 2000. Pathogenicity of the rhynchosporium secalis population in the Western Cape province of South Africa. 115: 75–82.Google Scholar
  19. Skou, J. and Haahr, V., 1984. An analysis of heredity of resistance against barley leaf stripe (Drechslerei graminea) Nordiskjordbrugsforsking, 66: 205–207.Google Scholar
  20. Starling, T. M., Roane, C. W. and Chi, K. R., 1971. Inheritance of reaction to Rhynchosporium secalis in winter barley. Proc. 2nd Int. Barley Genet. Symp. Pullman. Washington. 1969. 513–519.Google Scholar
  21. Van Leur, J. A. G. and Ceccarelli, S., 1990. Subsistence farmer strategies in response to drought and biotic stress uncertainty. Symposium on biotic stresses of barley in arid and semi - arid environments, Big Sky, Montana, 1990.Google Scholar
  22. Van Leur, J. A. G., Ceccarelli, S. and Grando, S., 1989. Diversity for disease resistance in barley landraces from Syria and Jordan. Plant Breed. 103: 324–335.CrossRefGoogle Scholar
  23. Xi, K., Burnett, P. A., Tewari, J. P., Chen, M. H., Turkington, T. K. and Helm, J. H., 2000. Histopathological study of barley cultivars resistant and susceptible to Rhyncosporium secalis. Phytopathology, 90:94–102.CrossRefGoogle Scholar
  24. Yitbarek, S., Berhane, L., Fikadu, A., Van Leur, J. A. G., Grando, S., and Ceccarelli, S., 1998. Variation in Ethiopian barley landrace populations for resistance to barley leaf scald and net blotch. Plant Breed. 117:419–423.CrossRefGoogle Scholar
  25. Zadoks, J. C., Chang, T. T., and Konzak, C. F. 1974. A decimal code for growth stages of ce reals. Weed Research, 14:415–421.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2005

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Molecular Biology and BiotechnologyAECSDamascusSyria

Personalised recommendations