Advertisement

Cereal Research Communications

, Volume 43, Issue 1, pp 1–11 | Cite as

Molecular Evidence of the Haploid Origin in Wheat (Triticum aestivum L.) with Aegilops kotschyi Cytoplasm and Whole Genome Expression Profiling after Haploidization

  • J. L. Wang
  • Y. N. Wang
  • D. C. Liu
  • X. L. Guo
  • W. L. Yang
  • K. H. Zhan
  • X. J. Wang
  • A. M. ZhangEmail author
Open Access
Genetics

Abstract

Aegiolops kotschyi cytoplasmic male sterile system often results in part of haploid plants in wheat (Triticum aestivum L.). To elucidate the origin of haploid, 235 wheat microsatellite (SSR) primers were randomly selected and screened for polymorphism between haploid (2 n = 3 x = 21 ABD) and its parents, male-sterile line YM21 (2 n = 6 x = 42 AABBDD) and male fertile restorer YM2 (2 n = 6 x = 42 AABBDD). About 200 SSR markers yielded clear bands from denatured PAGE, of which 180 markers have identifiable amplification patterns, and 20 markers (around 8%) resulted in different amplification products between the haploid and the restorer, YM2. There were no SSR markers that were found to be distinguishable between the haploid and the male sterile line YM21. In addition, different distribution of HMW-GS between endosperm and seedlings from the same seeds further confirmed that the haploid genomes were inherited from the maternal parent. After haploidization, 1.7% and 0.91% of total sites were up- and down-regulated exceeding twofold in the shoot and the root of haploid, respectively, and most of the differentially expressed loci were up/down-regulated about twofold. Out of the sensitive loci in haploid, 94 loci in the shoot, 72 loci in the root can be classified into three functional subdivisions: biological process, cellular component and molecular function, respectively.

Keywords

wheat microsatellite hexaploid haploid gene chip 

Supplementary material

42976_2015_4301001_MOESM1_ESM.pdf (261 kb)
Supplementary material, approximately 268 KB.

References

  1. Adams, K.L. 2007. Evolution of duplicate gene expression in polyploid and hybrid plants. J. Heredity 98:136–141.CrossRefGoogle Scholar
  2. Albertin, W., Balliau, T., Brabant, P., Chèvre, A.M., Eber, F., Malosse, C., Thiellement, H. 2006. Numerous and rapid non-stochastic modifications of gene products in newly synthesized Brassica napus allotetraploids. Genetics 173:1101–1113.CrossRefGoogle Scholar
  3. Belicuas, P.R., Guimarães, C.T., Paiva, L.V., Duarte, J.M., Maluf, W.R., Paiva, E. 2007. Androgenetic haploids and SSR markers as tools for the development of tropical maize hybrids. Euphytica 156:95–102.CrossRefGoogle Scholar
  4. Blanc, G., Hokamp, K., Wolfe, K.H. 2003. A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 13:137–144.CrossRefGoogle Scholar
  5. Bolstad, B.M., Irizarry, R.A., Astrand, M., Speed, T.P. 2003. A comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinformatics 19:185–193.CrossRefGoogle Scholar
  6. Bouvier, L., Guerif, P.H., Djulbic, M., Durel, C.E., Chevreau, E., Lespinasse, Y. 2002. Chromosome doubling of pear haploid plants and homozygosity assessment using isozyme and microsatellite markers. Euphytica 123:255–262.CrossRefGoogle Scholar
  7. Carputo, D., Barone, A. 2005. Ploidy level manipulations in potato through sexual hybridization. Ann. Appl. Biol. 146:71–79.CrossRefGoogle Scholar
  8. Casu, R.E., Jarmey, J., Bonnett, G., Manners, J. 2007. Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by Affymetrix Gene Chip Sugarcane Genome Array expression profiling. Function and Integrative Genomics 7:153–167.CrossRefGoogle Scholar
  9. Chen, Z.Z., Xue, C.H., Zhu, S., Zhou, F., Ling, X.B., Liu, G., Chen, L. 2005. GoPipe: Streamlined gene ontology annotation for batch anonymous sequences with statistics. Biophys. Prog. Biochem. 32:187–191.Google Scholar
  10. Chen, Z.J, Ni, Z.F. 2006. Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays 28:240–252.CrossRefGoogle Scholar
  11. Chen, Z.J. 2007. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu. Rev. Plant Biol. 58:377.CrossRefGoogle Scholar
  12. Cheng, Z.M., Korban, S.S. 2011. In vitro ploidy manipulation in the genomics era. Plant Cell Tiss. Organ. Cult. 104:281–282.CrossRefGoogle Scholar
  13. Dorrance, A.E., Inglis, A.D., Derie, M.L., Brown, C.R., Goodwin, S.B., Fry, W.E., Deah, K.L. 1999. Characterization of Phytophthora infestans populations in western Washington. Plant Dis. 83:423–428.CrossRefGoogle Scholar
  14. Dunwell, J.M. 2010. Haploids in flowering plants: Origins and exploitation. Plant Biotechnol. J. 8:377–424.CrossRefGoogle Scholar
  15. Forster, B.P., Heberle-Bors, H., Kasha, K.J., Touraev, A. 2007. The resurgence of haploids in higher plants. Trends in Plant Sci. 12:368–375.CrossRefGoogle Scholar
  16. Galitski, T., Saldanha, A.J., Styles, C.A., Lander, E.S., Fink, G.R. 1999. Ploidy regulation of gene expression. Science 285(5425):251–254.CrossRefGoogle Scholar
  17. Germanà, M.A. 2011. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Reports 30:839–857.CrossRefGoogle Scholar
  18. Guo, M., Davis, D., Birchler, J.A. 1996. Dosage effects on gene expression in a maize ploidy series. Genetics 142:1349–1355.PubMedPubMedCentralGoogle Scholar
  19. Kashkush, K., Feldman, M., Levy, A.A. 2002. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659.PubMedPubMedCentralGoogle Scholar
  20. Kihara, H., Tsunewaki, K. 1962. Use of an alien cytoplasm as a new method of producing haploids. The Japanese J. of Genet. 37:310–313.CrossRefGoogle Scholar
  21. Kimber, G., Feldman, M. 1987. Wild wheat — an introduction. Special report 353, College of Agriculture, University of Missouri-Columbia, USA, 142 pp.Google Scholar
  22. Kobayashi, M., Tsunewaki, K. 1980. Haploid induction and its genetic mechanisms in alloplasmic common wheat. J. Heredity 71:9–14.CrossRefGoogle Scholar
  23. Li, H., Singh, R.P., Braun, H.J., Pfeiffer, W.H., Wang, J. 2013. Doubled haploids versus conventional breeding in CIMMYT wheat breeding programs. Crop Sci. 53:74–83.CrossRefGoogle Scholar
  24. Lu, B., Pan, X., Zhang, L., Huang, B., Sun, L., Li, B., Yi, B., Zheng, S., Yu, X., Ding, R., Chen, W. 2006. A genome-wide comparison of genes responsive to autopolyploidy in Isatis indigoti causing Arabidopsis thaliana Affymetrix gene chips. Plant Mol. Biol. Reporter 24:197–204.CrossRefGoogle Scholar
  25. Muranty, H., Sourdille, P., Bernard, S., Bernard, M. 2002. Genetic characterization of spontaneous diploid androgenetic wheat and triticale plants. Plant Breed. 121:470–474.CrossRefGoogle Scholar
  26. Murovec, J., Stajner, N., Jakse, J., Javornik, B. 2007. Microsatellite marker for homozygosity testing of putative doubled haploids and characterization of Mimulus species derived by a cross-genera approach. J. Am. Soc. for Horticultural Sci. 132:659–663.CrossRefGoogle Scholar
  27. Nemorin, A., David, J., Maledon, E., Nudol, E., Dalon, J., Arnau, G. 2013. Microsatellite and flow cytometry analysis to help understand the origin of Dioscorea alata polyploids. Ann. Bot. 112:811–819.CrossRefGoogle Scholar
  28. Sambrook, J., Russell, D.W. 2001. Molecular Cloning: A Laboratory Manual of Cold Spring Harbor Laboratory, 3 rd ed. Woodbury. New York, USA.Google Scholar
  29. Stewart, S., Wickramasinghe, D., Dorrance, A.E., Robertson, A.E. 2011. Comparison of three microsatellite analysis methods for detecting genetic diversity in Phytophthora sojae (Stramenopila: Oomycete). Biotechnol. Letters 33:2217–2223.CrossRefGoogle Scholar
  30. Sun, S.Y., Yang, Z.H., Liu, W.G. 1994. Studies on the cytology of the synergid apogamy by Ae. kotschyi cytoplasm male-sterile in common wheat. Acta Universitatis Agriculturae Boreali-occidentalis 22:29–34.Google Scholar
  31. Tang, F., Tao, Y., Zhao, T. et al. 2006. In vitro production of haploid and doubled haploid plants from pollinated ovaries of maize (Zea mays). Plant Cell, Tissue and Organ Cult. 84:210–214.CrossRefGoogle Scholar
  32. Tsunewaki, K., Endo, T.R., Mukai, Y. 1974. Further discovery of alien cytoplasms inducing haploids and twins in common wheat. Theor. Appl. Genet. 45:104–109.CrossRefGoogle Scholar
  33. Tsunewaki, K., Mukai, Y. 1990. Wheat Haploids through the Salmon Method Wheat. Springer, Berlin, Heidelberg, Germany, pp. 460–478.Google Scholar
  34. Vanwynsberghe, L., Witte, K.D., Coart, E., Keulemans, J. 2005. Limited application of homozygous genotypes in apple breeding. Plant Breed. 124:399–403.CrossRefGoogle Scholar
  35. Wang, J., Liu, D., Guo, X., Yang, W., Wang, X., Zhan, K., Zhang, A. 2011. Variability of gene expression after polyhaploidization in wheat (Triticum aestivum L.). G3: Genes, Genomes, Genetics 1:27–33.CrossRefGoogle Scholar
  36. Zhang, H.Y., Peng, H., Li, P.C., Deng, Q.M., Xu, P.Z., Li, Y., Wang, X.D., Wu, X.J. 2008. The microarray analysis for gene expression in haploids and diploids derived from twin-seedling rice. Science in China C: Life Sciences 51:503–512.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • J. L. Wang
    • 1
    • 2
  • Y. N. Wang
    • 3
  • D. C. Liu
    • 1
  • X. L. Guo
    • 4
  • W. L. Yang
    • 1
  • K. H. Zhan
    • 5
  • X. J. Wang
    • 3
  • A. M. Zhang
    • 1
    • 5
    Email author
  1. 1.State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyCASBeijingChina
  2. 2.Institute of Shandong River WetlandsLaiwuChina
  3. 3.State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental BiologyCASBeijingChina
  4. 4.College of BiologyChina Agricultural UniversityBeijingChina
  5. 5.The Collaborative Innovation Center for Grain Crops in Henan, College of AgronomyHenan Agricultural UniversityZhengzhouChina

Personalised recommendations