Advertisement

Cereal Research Communications

, Volume 41, Issue 4, pp 593–600 | Cite as

Expression of High Molecular Weight Glutenin Subunit Genes Correlated with Gluten Content in Common Wheat Varieties from the Highland of Ecuador

  • A. Bravo
  • L. Ponce
  • P. Párraga
  • R. F. OlivaEmail author
  • K. Proaño
Quality and Utilization

Abstract

In this study we analyzed the performance of three wheat varieties in relation to gluten content under high-altitude growing conditions in the Andes of Ecuador. A field experiment was conducted at 3058 meters above sea level during 2009 using adapted wheat cultivar Cojitambo, cv. Carnavalero, and cv. Sibambe. Transcript accumulations of High Molecular Weight Glutenin Subunits (HMW-GS) genes were also evaluated during grain development using qRT-PCR. We recorded the expression profile of HMW-GS genes during 41 days and showed a coordinated pattern of induction with significant higher levels at 82–86 days. Transcript accumulation of 1Dx5, 1Dy10, 1Bx7, 1Ax1, and 1By9 genes were analyzed in more details during this period. The assay highlighted the specific contribution of 1Bx7, 1Dy10, and 1Dx5 during gluten formation in Ecuadorian wheat varieties. Under Andean highlands conditions, cv. Carnavalero showed the higher values of total agglomerated protein upon hydration and higher levels of expression of particular HMW-GS genes. The data suggest a correlation between wet gluten content and HMW-GS genes expression. Our study contributes to understand gluten formation in wheat endosperm under high-altitude conditions in the Andes.

Keywords

wheat glutenin HMW-GS genes highlands of Ecuador 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenbach, S.B., Kothari, K.M., Lieu, D. 2002. Environmental conditions during wheat grain development alter temporal regulation of major gluten protein genes. Cereal Chem. 79:279–285.CrossRefGoogle Scholar
  2. Anjum, F.M., Khan, M.R., Din, A., Saeed, M., Pasha, I., Arshad, M.U. 2007. Wheat gluten: High molecular weight glutenin subunits — structure, genetics, and relation to dough elasticity. J. Food Sci. 72:56–63.CrossRefGoogle Scholar
  3. Barro, F., Rooke, L., Bekes, F., Gras, P., Tatham, A.S., Fido, R., Lazzeri, P.A., Shewry, P.R., Barcelo, P. 1997. Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nature Biotechnol. 15:1295–1299.CrossRefGoogle Scholar
  4. Broglie, R., Coruzzi, G., Lamppa, G., Keith, B., Chua, N.H. 1983. Structural analysis of nuclear genes coding for the precursor to the small subunit of wheat ribulose-1,5-bisphosphate carboxylase. Nature Biotechnol. 1:55–61.CrossRefGoogle Scholar
  5. Czechowski, T., Bari, R.P., Stitt, M., Sheible, W.R., Udvardi, M.K. 2004. Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root-and shoot-specific genes. Plant J. 38:366–379.CrossRefGoogle Scholar
  6. Greene, F. 1983. Expression of storange protein genes in developong wheat (Triticum aestivum L.) seeds. Plant Physiol. 71:40–46.CrossRefGoogle Scholar
  7. Grimwade, B., Tatham, A.S., Freedman, R.B., Shewry, P.R., Napier, J.A. 1996. Comparison of the expression patterns of wheat gluten proteins and proteins involved in the secretory pathway in developing caryopses of wheat. Plant Mol. Biol. 30:1067–1073.CrossRefGoogle Scholar
  8. Jaya, E. 2010. Evaluation of nutritional and nutraceutical potential of donuts made with a mixture of flour quinoa (Chenopodium quinoa Willd) and wheat flour (Triticum vulgare). BSc. Thesis, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador.Google Scholar
  9. Johansson, E., Henriksson, P., Svensson, G., Heneen, W.K. 1993. Detection, chromosomal location and evaluation of the functional value of a novel high Mr glutenin subunit found in Swedish wheats. J. Cereal Sci. 17:237–245.CrossRefGoogle Scholar
  10. Labuschagne, M.T., Elago, O., Koen, E. 2009. The influence of temperature extremes on some quality and starch characteristics in bread, biscuit and durum wheat. J. Cereal Sci. 49:184–189.CrossRefGoogle Scholar
  11. Li, Z., Hansen, J.L., Liu, Y., Zemetra, R.S., Berger, P.H. 2004. Using real-time PCR to determine transgene copy number in wheat. Plant Mol. Biol. R. 22:179–188.CrossRefGoogle Scholar
  12. Paolacci, A.R., Tanzarella, O.A., Porceddu, E., Ciaffi, M. 2009. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol. Biol. 10:11–38.CrossRefGoogle Scholar
  13. Payne, P.I., Corfield, K.G., Holt, L.M., Blackman, J.A. 1981. Correlations between the inheritance of certain high-molecular weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J. Sci. Food Agric. 32:51–60.CrossRefGoogle Scholar
  14. Payne, P.I. 1987. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Plant Biol. 38:141–153.Google Scholar
  15. Peña, E., Bernardo, A., Soler, C., Jouve, N. 2005. Relationship between common wheat (Triticum aestivum L.) gluten proteins and dough rheological properties. Euphytica 143:169–177.CrossRefGoogle Scholar
  16. Radovanovic, C.N., Cloutier, S., Brown, D., Humphreys, D.G., Lukow, O.M. 2002. Genetic variance for gluten strength contributed by high molecular weight glutenin proteins. Cereal Chem. 79:843–849.CrossRefGoogle Scholar
  17. Rooke, L., Békés, F., Fido, R., Barro, F., Gras, P., Tatham, A.S., Barcelo, P., Lazzeri, P., Shewry, P.R. 1999. Overexpression of a gluten protein in transgenic wheat results in greatly increased dough strength. J. Cereal Sci. 30:115–120.CrossRefGoogle Scholar
  18. Shewry, P.R., Tatham, A.S., Barro, F., Barcelo, P., Lazzeri, P. 1995. Biotechnology of breadmaking: unraveling and manipulating the multi-protein gluten complex. Nat. Biotechnol. 13:1185–1190.CrossRefGoogle Scholar
  19. Shewry, P.R., Halford, N.G., Tatham, A.S., Popineau, Y., Lafiandra, D., Belton, P. 2003. The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Adv. Food Nutr. Res. 45:221–302.Google Scholar
  20. Teran, D. 2010. Introduction and agronomic evaluation of seven cultivars and two promissory lines of wheat (Triticum vulgare. L) in three locations of the Chimborazo province. BSc. thesis, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador.Google Scholar
  21. Tosi, P., Parker, M., Gritsch, C.S., Carzaniga, R., Martin, B., Shewry, P.R. 2009. Trafficking of storage proteins in developing grain of wheat. J. Exp. Bot. 60:619–627.CrossRefGoogle Scholar
  22. Wieser, H., Zimmermann, G. 2000. Importance of amounts and proportions of high molecular weight subunits of glutenin for wheat quality. Eur. Food Res. Techno. 210:324–330.CrossRefGoogle Scholar
  23. Yue, S.J., Li, H., Li, Y.W., Zhu, Y.F., Guo, J.K., Liu, Y.J., Chen, Y., Jia, X. 2008. Generation of transgenic wheat lines with altered expression levels of 1Dx5 high-molecular weight glutenin subunit by RNA interference. J. Cereal Sci. 47:153–161.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Bravo
    • 1
  • L. Ponce
    • 2
  • P. Párraga
    • 1
  • R. F. Oliva
    • 1
    • 3
    • 4
    Email author
  • K. Proaño
    • 1
  1. 1.Departmento de Ciencias de la VidaEscuela Politécnica del EjercitoSangolquíEcuador
  2. 2.Programa de Cereales, Estación Experimental Santa CatalinaINIAPQuitoEcuador
  3. 3.Programa Prometeo, Secretaría Nacional de Educación Superior, CienciaTecnología e Innovación, SENESCYTQuitoEcuador
  4. 4.International Rice Research InstituteMetro ManilaPhilippines

Personalised recommendations