Cereal Research Communications

, Volume 41, Issue 4, pp 562–572 | Cite as

Glu-1 Alleles and Prediction of Bread-Making Quality Traits in Triticale

  • T. VyhnánekEmail author
  • E. Halouzková
  • P. Martinek
Open Access
Quality and Utilization


Polymerase chain reaction (PCR) was used to identify the allelic composition of Glu-A1, Glu-B1 and Glu-D1 loci that comprise the high-molecular-weight (HMW) glutenin subunits in 15 triticale genotypes. The Glu-A1b allele was detected most frequently (86.7%) at the Glu-A1 locus; the Glu-A1a and Glu-A1c alleles were only found, respectively, in the ‘Pawo’ and ‘Leontino’ varieties. Five allelic combinations were detected at Glu-B1 [Glu-B1-1a + 2o (encoding Bx7+By8*), Glu-B1-1a + 2s (Bx7+By18*), Glu-B1-1a + 2z (Bx7+By20*), Glu-B1-1b + 2a (Bx7*+By8) and Glu-B1-1b + 2o (Bx7*+By8*)]. The Glu-D1d allele (HMW subunits 5+10) was observed in breeding lines that carried translocated segments of wheat chromosome 1D. Dough mixing results indicated the Glu-D1d allele provided slight improvements in bread-making quality. Three-year results with Glu-B1b + 2o/2a encoding subunits Bx7*+By8/By8* exhibited positive affects in bread-making quality. These subunits were detected in varieties ‘Mungis’ and ‘Pawo’.


triticale × Triticosecale Wittmack allelic variation allele-specific markers HMW glutenin subunits 


  1. Békés, F., Kemény, S., Morell, M. 2006. An integrated approach to predicting end-product quality of wheat. Eur. J. Agron. 25:155–162.CrossRefGoogle Scholar
  2. Bobková, L., Hromádko, M. 2008. Winter wheat Bohemia. Czech J. Genet. Plant Breed. 44:121–122.CrossRefGoogle Scholar
  3. Bradová, J., Matějová, E. 2008. Comparison of the results of SDS PAGE and chip electrophoresis of wheat storage proteins. Chromatogr. 67:83–88.CrossRefGoogle Scholar
  4. Bradová, J., Štočková, L. 2010. Evalution of winter wheat collection in terms of HMW- and LMW-glutenin subunits. Czech J. Genet. Plant Breed. 46:S96–S99.CrossRefGoogle Scholar
  5. Branlard, G., Dardevet, M., Saccomano, R., Lagoutte, F., Gourdon, J. 2001. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica 119:59–67.CrossRefGoogle Scholar
  6. Brzeziński, W. 2006. Elektroforezy rodzajów odmian pszenicy, jȩczmienia i owsa zarejestrowane w Polsce (Electrophoretic patterns of wheat, barley and oat cultivars registered in Poland). Wiadomości Odmianoznawcze 84, Słupia Wielka, Poland. (in Polish)Google Scholar
  7. Butow, B.J., Gale, K.R., Ikea, J., Juhasz, A., Bedo, Z., Tamas, L., Gianibelli, M.C. 2004. Dissemination of the highly expressed Bx7 glutenin subunits (Glu-B1al allele) in wheat as revealed by novel PCR markers and HPLC. Theor. Appl. Genet. 109:1525–1535.CrossRefGoogle Scholar
  8. Cornish, G.B., Békés, F., Allen, H.M., Martin, D.J. 2001. Flour proteins linked to quality traits in an Australian doubled haploid wheat population. Aust. J. Agric. Res. 52:1339–1348.Google Scholar
  9. Cornish, G.B., Békés, F., Eagles, H.A., Payne, P.I. 2006. Prediction of dough properties for bread wheats (Chapter 8). In: Wrigley, C.W., Békés, F., Bushuk, W. (eds), Gliadin and Glutenin. The Unique Balance of Wheat Quality. AACCI Press, St Paul, MN, USA, pp. 243–280.CrossRefGoogle Scholar
  10. CSN 46 1100-1, 1998. Food cereals — Part 1: Common regulations (Czech Technical Norm).Google Scholar
  11. D’Ovidio, R., Anderson, O.D. 1994. PCR analysis to distinguish between alleles of member of a multigene family correlated with bread-making quality. Theor. Appl. Genet. 88:759–763.CrossRefGoogle Scholar
  12. De Bustos, A., Rubio, P., Jouve, N. 2000. Molecular characterization of the inactive allele of the gene Glu-A1 and the development of a set of AS-PCR markers for HMW glutenins of wheat. Theor. Appl. Genet. 100:1085–1094.CrossRefGoogle Scholar
  13. Eagles, H.A., Hollamby, G.J., Gororo, N.N., Eastwood, R.F. 2002. Estimation and utilization of glutenin gene effects from the analysis of unbalanced data from wheat breeding programs. Aust. J. Agric. Res. 53:1047–1057.CrossRefGoogle Scholar
  14. ISO 3093, 2004. Wheat, rye and respective flours, durum wheat and durum wheat semolina — Determination of the Falling Number according to Hagberg-Perten.Google Scholar
  15. ISO 5529, 2007. Wheat — Determination of the sedimentation index — Zeleny test.Google Scholar
  16. ISO 5530-1, 1997. Wheat flour: Physical characteristics of doughs. Part 1: Determination of water absorption and rheological properties using farinograph.Google Scholar
  17. ISO 7971-2, 1995. Cereals — Determination of bulk density, called “mass per hectolitre”.Google Scholar
  18. Lafiandra, D., Tucci, G.F., Pavoni, A., Turchetta, T., Margiotta, B. 1997. PCR analysis of x- and y-type genes present at the complex Glu-A1 locus in durum and bread wheat. Theor. Appl. Genet. 94:235–240.CrossRefGoogle Scholar
  19. Lei, Z.S., Gale, K.R., He, Z.H., Gianibelli, C., Lareoque, O., Xia, X.C., Butow, B.J., Ma, W. 2006. Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. J. Cereal Sci. 43:94–101.CrossRefGoogle Scholar
  20. Liu, L., Ikeda, T.M., Branlard, G., Peña, R.J., Rogers, W.J., Lerner, S.E., Kolman, M.A., Xia, X.C., Wang, L.H., Ma, W.J., Apples, R., Yoshida, H., Wang, A., Yan, Y.M., He, Z.H. 2010. Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat. BMC Plant Biol. 10:124.CrossRefGoogle Scholar
  21. Lukaszewski, A.J. 2006. Cytogenetically engineered rye chromosomes 1R to improve bread-making quality of hexaploid triticale. Crop Sci. 46:2183–2194.CrossRefGoogle Scholar
  22. Ma, W., Appels, R., Békés, F., Larroque, O., Morell, M.K., Gale, K.R. 2005. Genetic characterisation of dough rheological properties in wheat doubled haploid population: Additive genetic effects and epistatic interactions. Theor. Appl. Genet. 111:410–422.CrossRefGoogle Scholar
  23. Martinek, P., Vinterová, M., Burešová, I., Vyhnánek, T. 2008. Agronomic and quality characteristics of triticale (× Triticosecale Wittmack) with HMW glutenin subunits 5+10. J. Cereal Sci. 47:68–78.CrossRefGoogle Scholar
  24. Matejková, P., Kučerová, J., Šottníková, V., Vyhnánek, T., Martinek, P. 2009. Parametry nově vytvořených liniÍ tritikale šlechtěných na zlepšenou pekařskou jakost (Parameters of newly developed lines of triticale selected for improved bread-making quality). Acta Fytotech. Zootech. 12:414–422. (in Czech)Google Scholar
  25. Payne, P.I. 1987. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Ann. Rev. Plant Physiol. 38:141–153.CrossRefGoogle Scholar
  26. Payne, P.I., Holt, L.M., Law, C. 1981. Structural and genetical studies of theHMWsubunits of wheat glutenin. I. Allelic variations in subunits amongst varieties of wheat (Triticum aestivum L.). Theor. Appl. Genet. 60:229–236.CrossRefGoogle Scholar
  27. Payne, P.I., Lawrence, G.J. 1983. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. Commun. 11:29–35.Google Scholar
  28. Peña, R.J. 2004. Food uses of triticale. In: Mergoum, M., Gómez-Macpherson, H. (eds), Triticale Improvement and Production. FAO, Rome, Italy, pp. 37–85.Google Scholar
  29. Salmanowicz, B.P., Dylewicz, M. 2007. Identification and characterization of high-molecular-weight glutenin genes in Polish triticale cultivars by PCR-based DNA markers. J. Appl. Genet. 48:347–357.CrossRefGoogle Scholar
  30. Seguchi, M., Ishihara, C., Yoshino, Y., Nakatsuka, K., Yoshira, T. 1999. Breadmaking properties of triticale flour with wheat flour and relationship to amylase activity. J. Food Sci. 64:582–586.CrossRefGoogle Scholar
  31. Singh, N.K., Shepherd, K.W. 1998. The structure and genetic control of a new class of disulphide-linked proteins in wheat endosperm. Theor. Appl. Genet. 71:79–92.CrossRefGoogle Scholar
  32. Sozinov, A.A., Poperelja, F.A. 1979. Polimorfizm prolaminov i selekcija (Polymorphism of prolamins and selection). Sibirskij Vestnik Selskokhozajstvenoj Nauki 10:21–34. (in Russian)Google Scholar
  33. Starovičová, M., Gálová, Z., Knoblochová, H. 2003. Identification of glutenin markers in cultivars of three wheat species. Czech J. Genet. Plant Breed. 39:51–57.CrossRefGoogle Scholar
  34. Šašek, A., Černý, J., Humpolíková, P., Pekárková, J. 1999. The effect of varietal purity on the quality of declared varieties of food wheat. Rostl. Výr. 45:197–204.Google Scholar
  35. Šrámková, Z., Gregová, E., Šliková, S., Šturdík, E. 2010. Wheat varieties released in Slovakia and their bread-making quality. Cereal Res. Commun. 38:386–394.CrossRefGoogle Scholar
  36. Woś, H., Brzeziński, W. 2011. Pszenżyto — zboże chlebowe (Triticale — bread commodity). Przeglad Piekarski i Cukierniczy 2:28–29. (in Polish)Google Scholar
  37. Woś, H., Brzeziński, W., Arseniuk, E., Zimny, J., Woś, J. 2008. Triticale of improved bread-making quality. In: Prohens, J., Badenes, M.L. (eds), Modern Variety Breeding for Present and Future Needs, Proc. 18th EUCARPIA General Congress, Valencia, Spain, p. 661.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Plant BiologyMendel University in Brno, CEITEC MENDELUBrnoCzech Republic
  2. 2.Central European Institute of TechnologyMendel University in Brno, CEITEC MENDELUBrnoCzech Republic
  3. 3.Agrotest Fyto, Ltd.KroměřížCzech Republic

Personalised recommendations