Cereal Research Communications

, Volume 41, Issue 2, pp 266–274 | Cite as

Efficient Callus Induction and Plantlets Regeneration in Durum Wheat Using Mature Embryos

  • D. C. Tinak Ekom
  • S. M. Udupa
  • F. Gaboun
  • M. N. Benchekroun
  • M. M. Ennaji
  • D. IraqiEmail author


The use of mature embryos as explants to initiate cultures is a best alternative to save time and costs, especially for producing somatic embryos for genetic transformation of durum wheat. However, plantlets regeneration from cultures derived from matured embryos is usually low. In this study, we tested matured embryos as explants from eight Moroccan durum wheat varieties (‘Irden’, ‘Marzak’, ‘Kyperounda’, ‘Isly’, ‘Amria’, ‘Karim’, ‘Marouane’ and ‘Tomouh’) to define suitable culture media for obtaining high frequencies of somatic embryogenesis and in vitro plantlets regeneration. For this purpose, we tested five induction and maintenance media (M1 to M5) based on MS media (macro and oligo-elements) which differed with respect to concentrations of plant hormones (2,4-D and BA), vitamins, sucrose, maltose, L-asparagine, and solidifying agents. All tested media induced embryogenic callus for the varieties and regenerate plantlets. However, a significant effect of variety, medium and variety × medium interaction were observed for callus induction and regeneration. Average callus growth as measured by relative fresh weight growth rate (RFWGR) across different media was the highest for ‘Amria’ (7215.4%) and the lowest for ‘Tomouh’ (2088.2%). M1 (2 mg/L 2,4-D) and M5 (3 mg/L 2,4-D) media gave highest RFWGR(6892.1% and 6332%, respectively) and M3 (1 mg/L 2,4-D) was the lowest (3708.8%), across different varieties. However, the embryogenic callus from M3 media regenerated the highest percentage of plantlet, upon transfer to regeneration medium, for most of the varieties. For the varieties ‘Marouane’, ‘Kyperounda’, ‘Marzak’, ‘Karim’, and ‘Tomouh’, the favourable medium was M3, whereas, for ‘Isly’, ‘Irden’ and ‘Amria’, both M2 (2.5 mg/L BA and 2.5 mg/L 2,4-D) and M3 were the favourable media for embryogenic callus induction. In this study, for the first time, favourable media for induction and regeneration from mature embryo of Moroccan durum wheat varieties were identified. These media will be used for callus induction and genetic transformation.


culture media durum wheat mature embryos plantlets regeneration somatic embryogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2013_41020266_MOESM1_ESM.pdf (22 kb)
Supplementary material, approximately 24.4 KB.


  1. Abbad-Andaloussi, F., Chahbar, A. 2005. Amélioration génétique du blé dur. In: INRA (ed), La création variétale à l’INRA, méthodologie, acquis et perspectives (Genetic improvement of durum wheat. In: INRA [ed.], Breeding at INRA, Methodology, Achievements and Prospects). National Institute of Agricultural Research (INRA), Rabat, Maroc, pp. 7–56. (in French)Google Scholar
  2. Ayolié, K., El Yacoubi, H., Rochdi, A. 2007. Influence du 2,4-D et de l’explant embryonnaire sur la callogenèse du Blé dur (Influence of 2,4-D and embryonic explant on durum wheat callus). Bull. Soc. Pharm. Bordeaux 146:97–112. (in French)Google Scholar
  3. Bahman, F.N., Omidi, M., Amiritokaldani, M. 2012. Callus induction and plant regeneration of wheat mature embryos under abscisic acid treatment. Int. J. of Agriculture and Crop Sci. 4:17–23.Google Scholar
  4. Bhalla, P.L. 2006. Genetic engineering of wheat — current challenges and opportunities. Trends Biotechnol. 24:305–311.CrossRefGoogle Scholar
  5. Daud, M.K., Shafaqat, A., Variath, M.T., Zhu, S.J. 2012. Antioxidative enzymes status in upland cotton callus culture under osmotic stresses. International Conference on Computational Techniques and Artificial Intelligence (ICCTAI’2012) Penang, Malaysia. Available at
  6. Filippov, M., Miroshnichenko, D., Vernikovskaya, D., Dolgov, S. 2006. The effect of auxins, time exposure to auxin and genotypes on somatic embryogenesis from mature embryos of wheat. Plant Cell Tiss. Org. 84:100192–100201.CrossRefGoogle Scholar
  7. Gadaleta, A., Giancaspro, A., Belchl, A., Blanco, A. 2006. Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation. J. Cereal Sci. 43:31–37.CrossRefGoogle Scholar
  8. Gamborg, O.L., Miller, R.A., Ojima, K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158.CrossRefGoogle Scholar
  9. Gugsa, L., Kumlehn, J. 2011. Somatic embryogenesis and massive shoot regeneration from immature embryo explants of Tef. Biotechnol. Res. Int. 2011:1–7.CrossRefGoogle Scholar
  10. He, D.G., Yang, Y.M., Scott, K.J. 1988. A comparison of scutellum callus and epiblast callus induction in wheat: The effect of genotype, embryo age and medium. Plant Sci. 57:225–233.CrossRefGoogle Scholar
  11. Iraqi, D., Hakam, N., Labhilili, M. 2005. Transformation génétique des embryons immatures du blé tendre (Triticum aestivum) et du blé dur (Triticum durum) (Genetic transformation of immature embryos of bread wheat (Triticum aestivum) and durum wheat (Triticum durum)). Al Awamia Moroccan J. Agric. Res. 115:3–16. (in French)Google Scholar
  12. Jones, H.D. 2005. Wheat transformation: Current technology and applications to grain development and composition. J. Cereal Sci. 41:137–147.CrossRefGoogle Scholar
  13. Karim, R., Chlyah, H., Badoc, A., Douira, A. 2005. Obtention de pieds néoformés suite à l’induction de cals embryogènes d’embryons zygotiques de Blés par le borate de sodium et un extrait de Fusarium graminearum (Obtaining neogenic foot following the induction of embryogenic callus of zygotic embryos of wheat by sodium borate and an extract of Fusarium graminearum). Bull. Soc. Pharm. Bordeaux 144:195–210. (in French)Google Scholar
  14. Karrou, M. 2003. Conduite du Blé au Maroc (Behavior of Wheat in Morocco). National Institute of Agricultural Research (INRA Editions), Rabat, Maroc, 57 pp. (in French)Google Scholar
  15. Li, Z.Y., Xia, G.M., Chen, H.M. 1992. Somatic embryogenesis and plant regeneration from protoplasts isolated from embryogenic cell suspension of wheat (Triticum aestivum L.). Plant Cell Tiss. Org. 28:79–85.CrossRefGoogle Scholar
  16. Malik, S.I., Rashid, H., Yasmin, T., Minhas, N.M. 2003. Effect of 2,4-dichlorophenoxyacetic acid on callus induction from mature wheat (Triticum aestivum L.) seeds. Int. J. of Agriculture and Biol. 6:156–159.Google Scholar
  17. MAPM. 2011. Situation de l’Agriculture Marocaine (Agriculture Situation in Morocco), No. 9. Ministry of Agriculture and Fisheries, Rabat, Morocco, 204 pp. Available at (in French)Google Scholar
  18. Mejza, S.J., Morgant, V., Di Bona, D.E., Wong, J.R. 1993. Plant regeneration from isolated microspores of Triticum aestivum. Plant Cell Rep. 12:149–153.CrossRefGoogle Scholar
  19. Mendoza, M.G., Kaeppler, H.F. 2002. Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.). In Vitro Cell. Dev-Pl. 38:39–45.CrossRefGoogle Scholar
  20. Monostori, T., Rozik, E., Bus, T.G., Tanacs, L. 2008. The use of field grown plant material in somatic tissue cultures of spring wheat genotypes. Cereal Res. Commun. 36:1135–1138.Google Scholar
  21. Munazir, M., Qureshi, R., Ali, G.M., Rashid, U., Noor, S., Mehmood, K., Ali, S., Arshad, A. 2010. Primary callus induction, somatic embryogenesis and regeneration studies in selected elite wheat varieties from Pakistan. Pak. J. Bot. 42:3957–3965.Google Scholar
  22. Neiverth, A., Silva, J.B.D., Schuster, I., Santos, M.F.D., Vendruscolo, E.C.G. 2010. Regeneration of wheat plants from wheat (Triticum aestivum L. cv. CD104) mature embryos. Scientia Agraria 11:101–108.CrossRefGoogle Scholar
  23. Ozias-Akins, P., Vasil, I.K. 1982. Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (wheat): Evidence for somatic embryogenesis. Protoplasma 110:95–105.CrossRefGoogle Scholar
  24. Pellegrineschi, A., Noguera, L.M., Skovmand, B., Brito, R.M., Velazquez, L., Salgado, M.M., Hernandez, R., Warburton, M., Hoisington, D. 2002. Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome 45:421–430.CrossRefGoogle Scholar
  25. Przetakiewicz, A., Orczyk, W., Nadolska-Orczyk, A. 2003. The effect of auxin on plant regeneration of wheat, barley and triticale. Plant Cell Tiss. Org. 73:245–256.CrossRefGoogle Scholar
  26. Rajyalakshmi, K., Grover, A., Maheshwari, N., Tyagi, A.K., Maheshwari, S.C. 1991. High frequency regeneration of plantlets from the leaf-bases via somatic embryogenesis and comparison of polypeptide profiles from morphogenic and non-morphogenic calli in wheat (Triticum aestivum). Physiol. Plantarum 82:617–623.CrossRefGoogle Scholar
  27. Raziuddin, J., Bakht Swati, Z.A., Shafi, M., Farhat, U., Akmal, M. 2010. Effect of cultivars and culture medium on callus formation and plant regeneration from mature embryos of wheat (Triticum aestivum L.). Pak. J. Bot. 42:639–652.Google Scholar
  28. Ren, J.P., Wang, X.G., Yin, J. 2010. Dicamba and sugar effects on callus induction and plant regeneration from mature embryo culture of wheat. Agri. Sci. in China 9:31–37.CrossRefGoogle Scholar
  29. SAS Institute. 1985. SAS/STAT Guide for Personal Computers, Version 6 edition. SAS Institute, Cary, NC, USA, 378 pp.Google Scholar
  30. Steel, R.G.D., Torrie, J.H. 1980. Principles and Procedures of Statistics: A Biometrical Approach, 2nd edition. McGraw-Hill, New York, USA, 633 pp.Google Scholar
  31. Takumi, S., Shimada, T. 1997. Variation in transformation frequencies among six common wheat cultivars through particle bombardment of scutellar tissues. Genes Genet. Syst. 72:63–69.CrossRefGoogle Scholar
  32. Viertel, K., Hess, D. 1996. Shoot tips of wheat as an alternative source for regenerable embryogenic callus cultures. Plant Cell Tiss. Org. 44:183–188.CrossRefGoogle Scholar
  33. Yin, G.X., Wang, Y.L., She, M.Y., Du, L.P., Xu, H.J., Ma, J.X., Ye, X.G. 2011. Establishment of a highly efficient regeneration system for the mature embryo culture of wheat. Agr. Sci. in China 10:9–17.CrossRefGoogle Scholar
  34. Zhou, H., Zheng, Y., Konzak, C.F. 1991. Osmotic potential of media affecting green plant percentage in wheat anther culture. Plant Cell Rep. 10:63–66.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • D. C. Tinak Ekom
    • 1
    • 3
  • S. M. Udupa
    • 2
  • F. Gaboun
    • 1
  • M. N. Benchekroun
    • 3
  • M. M. Ennaji
    • 4
  • D. Iraqi
    • 1
    Email author
  1. 1.Biotechnology Research UnitInstitut National de la Recherche Agronomique (INRA)RabatMorocco
  2. 2.ICARDA-INRA Cooperative Research ProjectInternational Center for Agricultural Research in the Dry Areas (ICARDA)RabatMorocco
  3. 3.Laboratory of Health and Environment Biotechnologies, Faculté des Sciences et Techniques MohammediaUniversité Hassan II Mohammedia-CasablancaMohammediaMorocco
  4. 4.Laboratory of Virology and Hygiene & Microbiology, Faculté des Sciences et Techniques MohammediaUniversité Hassan II Mohammedia-CasablancaMohammediaMorocco

Personalised recommendations