Advertisement

Cereal Research Communications

, Volume 41, Issue 2, pp 221–229 | Cite as

Development and Identification of a 4HL.5DL Wheat/Barley Centric Fusion Using Gish, Fish and SSR Markers

  • K. Kruppa
  • E. Türkösi
  • É. Szakács
  • A. Cseh
  • M. Molnár-LángEmail author
Genetics

Abstract

The 4H(4D) wheat/barley substitution line was crossed with the ‘Chinese Spring’ ph1b mutant genotype in order to induce wheat-barley homoeologous recombinations. F3 and F4 seeds of the 4H(4D) × ‘Chinese Spring’ ph1b mutant cross were analysed using genomic in situ hybridization, and a Robertsonian translocation was detected in monosomic form. Disomic centric fusions were selected among the self-fertilized progenies. The presence of the long arm of 4H was confirmed with SSR markers. The long arm of the 5D wheat chromosome in the Robertsonian translocation was identified using fluorescent in situ hybridization with the help of three DNA probes: pSc119.2, Afa family and pTa71. The wheat/barley centric fusion was identified as a 4HL.5DL translocation. This line exhibited supernumerary spikelet character, but the number of seeds/plant did not increase. The 4HL.5DL centric fusion line is suitable genetic material to study the expression of genes located on 4HL in a wheat genetic background.

Keywords

Triticum aestivum, Hordeum vulgare 4H(4D) substitution line ‘Chinese Spring’ ph1b mutant 4HL.5DL centric fusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bedbrook, J., Jones, J., O’Dell, M., Thompson, R.D., Flavell, R.B. 1980. A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560.CrossRefGoogle Scholar
  2. Chauhan, T., Singh, B.M. 1994. Karnal Bunt resistance in wheat-barley addition lines. Plant Breed. 112:252–255.CrossRefGoogle Scholar
  3. Colas, I., Shaw, P., Prieto, P., Wanous, M., Spielmeyer, W., Mago, R., Moore, G. 2008. Effective chromosome pairing requires chromatin remodelling at the onset of meiosis. Proc. Natl. Acad. Sci. 105:6075–6080.CrossRefGoogle Scholar
  4. Cseh, A., Kruppa, K., Molnár, I., Rakszegi, M., Dolezel, J., Molnár-Láng, M. 2011. Characterization of a new 4BS.7HL wheat-barley translocation line using GISH, FISH, and SSR markers and its effect on the b-glucan content of wheat. Genome 54:1–10.CrossRefGoogle Scholar
  5. Friebe, B., Jiang, J., Raupp, W.J., McIntosh, R.A., Gill, B.S. 1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica 91:59–87.CrossRefGoogle Scholar
  6. Gale, M.D., Miller, T.E. 1987. The introduction of alien genetic variation in wheat. In: Lupton, F.G.H. (ed.), Wheat Breeding: Its Scientific Basis. Chapman and Hall, London, UK, pp. 173–210.CrossRefGoogle Scholar
  7. Gerlach, W.L., Bedbrook, J.L. 1979. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 7:1869–1885.CrossRefGoogle Scholar
  8. Griffiths, S., Sharp, R., Foote, T.N., Bertin, I., Wanous, M., Reader, S., Colas, I., Moore, G. 2006. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752.CrossRefGoogle Scholar
  9. Handley, L.L., Nevo, E., Raven, J.A., Martýnez-Carrasco, R., Scrimgeour, C.M., Pakniyat, H., Forster, B.P. 1994. Chromosome 4 controls potential water use efficiency (d13C) in barley. J. Exp. Bot. 45:1661–1663.CrossRefGoogle Scholar
  10. Hart, G.E., Islam, A.K.M.R., Shepherd, K.W. 1980. Use of isozymes as chromosome markers in the isolation and characterization of wheat-barley chromosome addition lines. Genet. Res. 36:311–326.CrossRefGoogle Scholar
  11. Hoffmann, B., Aranyi, N.R., Molnár-Láng, M. 2010. Characterization of wheat-barley introgression lines for drought tolerance. Acta Agron. Hung. 58:211–218.CrossRefGoogle Scholar
  12. Islam, A.K.M.R., Shepherd, K.W. 1992. Production of wheat-barley recombinant chromosomes through induced homoeologous pairing 1. Isolation of recombinants involving barley arms 3HL and 6HL. Theor. Appl. Genet. 83:489–494.CrossRefGoogle Scholar
  13. Jauhar, P.P., Chibbar, R.N. 1999. Chromosome-mediated and direct gene transfers in wheat. Genome 42:570–583.CrossRefGoogle Scholar
  14. Karsai, I., Mészáros, K., Szûcs, P., Hayes, P.M., Láng, L., Bedõ, Z. 2006. The influence of photoperiod on the Vrn-H2 locus (4H) which is a major determinant of plant development and reproductive fitness traits in a facultative × winter barley (Hordeum vulgare L.) mapping population. Plant Breed. 125:468–472.CrossRefGoogle Scholar
  15. Koebner, R.M.D., Shepherd, K.W. 1985. Induction of recombination between rye chromosome 1RL and wheat chromosomes. Theor. Appl. Genet. 71:208–215.CrossRefGoogle Scholar
  16. Kreis, M., Williamson, M.S., Shewry, P.R., Sharp P., Gale, M. 1988. Identification of a second locus encoding b-amylase on chromosome 2 of barley. Genet. Res. 51:13–16.CrossRefGoogle Scholar
  17. Molnár, I., Linc, G., Dulai, S., Nagy, E.D., Molnár-Láng, M. 2007. Ability of chromosome 4H to compensate for 4D in response to drought stress in a newly developed and identified wheat-barley 4H(4D) disomic substitution line. Plant Breed. 126:369–374.CrossRefGoogle Scholar
  18. Molnár-Láng, M., Sutka, J. 1994. The effect of temperature on seed set and embryo development in reciprocal crosses of wheat and barley. Euphytica 78:53–58.Google Scholar
  19. Molnár-Láng, M., Linc, G., Friebe, B.R., Sutka, J. 2000. Detection of wheat-barley translocations by genomic in situ hybridization in derivatives of hybrids multiplied in vitro. Euphytica 112:117–123.CrossRefGoogle Scholar
  20. Molnár-Láng, M., Kruppa, K., Cseh, A., Bucsi, J., Linc, G. 2012. Identification and phenotypic description of new wheat/six-rowed winter barley disomic additions. Genome 55:302–311.CrossRefGoogle Scholar
  21. Murai, K., Koba, T., Shimada, T. 1997. Effects of barley chromosome on heading characters in wheat-barley chromosome addition lines. Euphytica 96:281–287.CrossRefGoogle Scholar
  22. Nagaki, K., Tsujimoto, H., Isono, K., Sasakuma, T. 1995. Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome 38:479–486.CrossRefGoogle Scholar
  23. Oberthur, L., Dyer, W., Ullrich, S.E., Blake, T.K. 1995. Genetic analysis of seed dormancy in barley (Hordeum vulgare L.). J Quant Trait Loci. Available on the internet: https://doi.org/www.ncgr.org/research/jag/papers95/paper595/indexp595.html
  24. Riley, R., Chapman, V. 1958. Genetic control of cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715.CrossRefGoogle Scholar
  25. Riley, R., Chapman, V., Johnson, R. 1968. Introduction of yellowrust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217:383–384.CrossRefGoogle Scholar
  26. Sears, E.R. 1977. An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol. 19:585–593.CrossRefGoogle Scholar
  27. Sears, E.R. 1981. Transfer of alien genetic material to wheat. In: Evans, L.T., Peacock, W.J. (eds), Wheat Science — Today and Tomorrow. Cambridge University Press, Cambridge, UK, pp. 75–89.Google Scholar
  28. Sepsi, A., Németh, K., Molnár, I., Szakács, É., Molnár-Láng, M. 2006. Induction of chromosome rearrangements in a 4H(4D) wheat-barley substitution using a wheat line containing a Ph suppressor gene. Cereal Res. Commun. 34:1215–1222.CrossRefGoogle Scholar
  29. Sharma, H., Ohm, H., Goulart, L., Lister, R., Appels, R., Benlhabib, O. 1995. Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat. Genome 38:406–413.CrossRefGoogle Scholar
  30. Sherman, J.D., Smith, L.Y., Blake, T.K., Talbert, L.E. 2001. Identification of barley genome segments introgressed into wheat using PCR markers. Genome 44:38–44.CrossRefGoogle Scholar
  31. Taketa, S., Awayama, T., lchii, M., Sunakawa, M., Kawahara, T., Mural, K. 2005. Molecular cytogenetic identification of nullisomy 5B induced homoeologous recombination between wheat chromosome 5D and barley chromosome 5H. Genome 48:115–124.CrossRefGoogle Scholar
  32. Tang, Y., Sorrels, M.E., Kochian, L.V., Garvin, D.F. 1999. Identification of RFLP markers linked to the barley aluminium tolerance gene Alp. Crop. Sci. 40:778–782.CrossRefGoogle Scholar
  33. Zhu, B., Choi, D.-W., Fenton, R., Close, T.J. 2000. Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol. Gen. Genet. 264:145–153.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • K. Kruppa
    • 1
  • E. Türkösi
    • 1
  • É. Szakács
    • 1
  • A. Cseh
    • 1
  • M. Molnár-Láng
    • 1
    Email author
  1. 1.Agricultural Institute, Centre for Agricultural ResearchHungarian Academy of SciencesMartonvásárHungary

Personalised recommendations